

REPORT AZIONE C1:

monitoraggio sugli effetti ambientali e produttivi delle Piantagioni Policicliche Permanenti

Progetto Life+ InBioWood

INDICE

	Introduzione	pag.	3
1	Report sulla biodiversità vegetale e animale prima della realizzazione delle piantagioni	pag.	£
2	Report sulla variazione della biodiversità vegetale e animale	pag.	11
3	Report sulle specie ornitiche prima della realizzazione delle piantagioni	pag.	19
4	Report sulla variazione di specie ornitiche significative con e senza piantagioni policicliche permanenti	pag.	25
5	Report sull'efficacia di controllo dell'azoto da parte delle Piantagioni Policicliche Permanenti lineari	pag.	39
6	Report sulla quantità di carbonio fissato grazie alla presenza delle piantagioni policicliche permanenti	pag.	47
7	L'indice di qualità nelle Piantagioni 3P del LIFE+ InBioWood valutazione in fase di qualificazione	pag.	49
8	Rapporto sulle attività di rilievo relative a dimensioni e sviluppo delle piante principali nelle Piantagioni 3P	pag.	57
	Considerazioni sui risultati esposti	pag.	123
	Considerations on the results presented	pag.	126

INTRODUZIONE

Questa pubblicazione raccoglie le relazioni prodotte dai ricercatori e dagli esperti coinvolti nelle attività di monitoraggio previste dall'Azione C1 del Progetto LIFE+ InBioWood (LIFE12 ENV/IT/000153).

L'azione C1 ha avuto lo scopo di:

- 1. Valutare la variazione di biodiversità indotta dalle piantagioni policicliche permanenti (Capitoli 1 e 2).
- 2. Valutare gli effetti delle piantagioni policicliche sulla presenza di specie ornitiche significative (Capitoli 3 e 4).
- 3. Valutare l'effetto tampone sugli inquinanti agricoli con e senza piantagioni policicliche permanenti (Capitolo 5).
- 4. Stimare la capacità di stoccaggio della CO₂ nelle piantagioni policicliche permanenti rispetto ad aree ad agricoltura intensiva.
- 5. Misurare l'accrescimento delle specie impiegate e stimare l'Indice di Qualità (IQ) nelle varie tipologie d'impianto (Capitolo 7 e 8).
- 6. Raccogliere in un'unica pubblicazione digitale, questa, i risultati di tutte le indagini svolte.

La raccolta dei dati e le indagini finalizzate a raggiungere gli obiettivi dell'Azione C1 sono state svolte da ricercatori e/o personale esperto dei seguenti soggetti:

- Associazione per l'Arboricoltura da Legno Sostenibile per l'Economia e l'Ambiente (AALSEA), partner LIFE+ InBioWood (per la valutazione dell'IQ delle piantagioni e la raccolta di dati a terra relativi allo sviluppo di piante principali del Ciclo medio Lungo /CML) e del ciclo brevissimo (CBB) e l'elaborazione dei dati sull'accrescimento delle Piantagioni LIFE+ InBioWood).
- Compagnia delle Foreste s.r.l., partner LIFE+ InBioWood e ideatore dell'Indice di Qualità (IQ) per la valutazione delle piantagioni da legno (per la valutazione dell'IQ delle piantagioni e la raccolta di dati a terra relativi allo sviluppo di piante principali del Ciclo medio Lungo /CML) e del ciclo brevissimo (CBB) e l'elaborazione dei dati e le considerazioni sull'accrescimento delle Piantagioni LIFE+ InBioWood).
- Consiglio per la Ricerca in agricoltura e l'analisi dell'Economia Agraria Centro Foreste e Legno - CREA FL (per i rilievi con sistema LIDAR terrestre - Terrestrial Laser Scan (TLS)).
- Consorzio di Bonifica Veronese, partner del progetto LIFE+ InBioWood (per la raccolta settimanale dei campioni di Acqua nei lisimetri utilizzati per la valutazione dell'impatto delle piantagioni sugli inquinanti agricoli).

- Dipartimento per l'Innovazione dei sistemi Biologici, Agroalimentari e Forestali (DIBAF) dell'Università della Tuscia (per i rilievi con sistema LIDAR montato su drone).
- Dipartimento Territorio e Sistemi Agro-Forestali (TESAF) dell'Università degli Studi di Padova (per le indagini sugli effetti sulla biodiversità).
- DREAm Italia Soc. Coop. Agr. For., Sezione faunistica (per le indagini ornitologiche).
- Horizon s.r.l., Spin-off dell'Università di Torino (per le analisi dei campioni di acqua necessarie per la valutazione dell'impatto delle piantagioni sugli inquinanti agricoli).
- PAN s.r.l., Spin-off dell'Università di Padova (per ne indagini sul carbonio fissato al suolo).

Di seguito sono riportate, nell'ordine da 1 a 5, le relazioni prodotte dai ricercatori e dagli esperti coinvolti. I temi da 1 a 4 sono stati prodotti da singoli gruppi di ricercatori o di esperti. La relazione 5 invece è il frutto del lavoro congiunto di quattro soggetti. I rilievi dei dati sono stati effettuati da DIBAF, CREA FL, AALSEA e Compagnia delle Foreste. L'elaborazione di tali dati e le conseguenti considerazioni sono invece a cura di Compagnia delle Foreste e AALSEA.

Al termine della sequenza di relazioni si trova una sintesi dei risultati ottenuti da ricercatori ed esperti realizzata a cura di AALSEA e Compagnia delle Foreste.

Conclude la pubblicazione un'ampia sintesi dei risultati in lingua Inglese.

REPORT SULLA BIODIVERSITÀ VEGETALE E ANIMALE

prima della realizzazione delle piantagioni

di Lucio Montecchio Dipartimento Territorio e Sistemi Agro-Forestali Università degli Studi di Padova In riferimento all'attività in oggetto, si comunica che ad oggi sono stati effettuati tutti i campionamenti, le osservazioni e le elaborazioni statistiche previste. In particolare:

- il 2 e 14 aprile sono stati effettuati i 10 campionamenti ante-impianto in altrettante aree di saggio circolari di 100 m² ciascuna in località Gazzo Veronese (VR),
- il 7 e 17 aprile sono stati effettuati 20 campionamenti analoghi in località S. Matteo alle Chiaviche (MN), sia in un pioppeto puro di prossima utilizzazione (10) sia in una piantagione mista policiclica (10).

Per ciascun taxon indendificato a livello sistematico, appartenente ai Phyla molluschi, anellidi, artropodi, cordati, ascomiceti e basidiomiceti ectomicorrizici sono state calcolate le abbondanze.

Le comunità sono state poi descritte secondo i seguenti parametri, al fine di verificare, al termine dell'attività, la significatività dell'eventuale incremento di biodiversità nel tempo e il graduale avvicinamento dell'area "Gazzo Veronese" a quella misurabile nei due siti situati nelle aree sperimentali di AALSEA di San Matteo delle Chiaviche (FISHER *et al.* 1943, HOEL 1943, MAGURRAN 2004):

- Numero di specie (taxon) Richness (S),
- Numero di specie (taxon) dominanti (aventi frequenza rel. >0.05)
- Varianza
- Dev. Standard
- · Coeff. di variazione
- Indice di Poisson
- · Indice di Shannon-Wiener
- · Indice di Simpson
- Indice di Brillouin

Risultati commentati

In Tabella 1 sono riportate le abbondanze di ciascun taxon individuato dalle osservazioni, per ciascun sito e per ciascun *plot*.

																												_	_	\neg
MESE e ANNO campionam.	\vdash													aj	pr-14	1				_									_	\dashv
SITO	<u> </u>						S.	Mat	teo d	lelle (Chia	viche	(M)	N)						_			Gaz	Z0	Ver	ones	e (\	/R)	_	_
PIANTAGIONE	F	iopp	eto p	uro (di pro	ossin	na uti	lizza	zion	e			pian	tagio	one p	olicl	ica n	iista		Щ				Pro	e-in	ıpiar	nto		_	
PLOT	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
PHYLUM molluschi																_				Ш							Ц	Ш	Ц	
ORDINE polmonati		1			1	1		1	1	3						1						Ш					Ц	Ш	Ц	1
FAMIGLIA helicidi																				Ш							Ц	Ш	Ц	
GENERE Helix																				Ш							Ц	Ш	Ц	
SPECIE pomatia												1								1							Ш		Ц	
FAMIGLIA arionidi																											Ш		Ц	
GENERE Arion																											Ш		Ш	
SPECIE lusitanicus	4	12	10	8	8	6	12	2	19	21			1			1	1	15	4	5								1		
PHYLUM anellidi																														
Classe hirudinei								1		1									1	1										
SUBCLASSE oligocheti	1									1																			1	1
PHYLUM artropodi																														
SUBPHYLUM chelicerati																														
SUBCLASSE aracnidi	13	13	11	13	17	36	4	2	2	3	19	1	1	1	3	13	3	10		2	82	7	23	8	8	17	8	19	6	35
SUBPHYLUM mandibolati																													\Box	
SUBCLASSE crostacei			1																										П	
SOTTOGRUPPO malacostraci																									Г		П		П	
ORDINE isopodi																													П	
FAMIGLIA ONISCIDI																											П		П	
GENERE Porcellio																											П	П	П	
SPECIE scaber	8	2	2	1	2				5	15								6			54	1	1		Г		П	3	2	
SUBCLASSE chilopodi																									Г		П	П	П	
SUBCLASSE diplopodi	3				2	2	1		1	9								4			3		4		3		П	П	П	
SUBCLASSE insetti		1							4			2						1									4	П	П	5
ORDINE collemboli																	1							1	1		1	П	П	
ORDINE ortotteri																									Г		П	П	П	
SPECIE forma juv.	1	1	1			2	1		4	1															Г	1	П	П	П	
ORDINE Rincoti																											П	П	\sqcap	
AFIDE ALATO		1																					1	2			П		\sqcap	
ORDINE coleotteri	1		4																		1	1					П	П	\sqcap	
FAMIGLIA curculionidi																											П	П	\sqcap	
GENERE Lixus	П																				7						П	П	\sqcap	
FAMIGLIA carabidi	П	11					4		8	2	1			4			7										П	П	\sqcap	
GENERE Carabus	П																										П	П	\sqcap	_
SPECIE granulatus	П	4	2	1	4	4			4	6					1	4		4			2	7	1				П	П	\sqcap	1
GENERE Pterosticus	П	Ė	Ī		Ė	Ċ									Ť	Ė					_		Ť				П	П	\sqcap	1
SPECIE melas	2																	12			6	П					П	П	\sqcap	_
GENERE Nebria		2	7	62	56	66	4	3	25	22	18	4		4	13	15	14		8	4		-	14	3			П	15	\sqcap	9
SPECIE brevicollis	1	Ť	Ė				Ė				-	Ė		Ė			-			İ	17			Ĺ		17	П		\sqcap	Ť
GENERE Anchomenus	Ė																			П	2.0	П			Ť	-	П	П	\sqcap	_
SPECIE dorsalis	3	9	2	3	11		2	4		38				2		2				П		П			Г		П	5	\sqcap	1
SEECLE dorsaus	3	9	- 2	_ 3	11			4		38												_	_	_	_	_	ш	э	_	1

GENERE Amara				1				2			4					2		10	12	20						5			1	
SPECIE aeneas																					1	П		1	Г		П		Т	П
FAMIGLIA scarabeidi																							3		2	1	1		T	
FAMIGLIA coccinellidi																								1	1				Т	
FAMIGLIA stafilinidi							1				1	1		2	2	2										3			Т	
ORDINE ditteri					5					1	1	1				1	1	3				5	2	Г	2	2			T	Т
FAMIGLIA sirfidi																													Т	1
FAMIGLIA tipulidi	1	1			1			1		1	1	1				1	1		2	1	5	1			1	1	2		4	
FAMIGLIA culicidi																						2		Г	Г		П		3	
FAMIGLIA muscidi													1								2	П		Г	Г		П	1	Т	
FAMIGLIA tabanidi																						П		1	Г		П		Т	
ORDINE imenotteri		6	4	3	1		3			1	1					1	1	2		1		П		Г	Г		П		Т	
FAMIGLIA formicidi	1	1			1		3			1	6	3				1		2	1	1	7		1	3			8		6	
FAMIGLIA braconidi																										1			Т	
PHYLUM cordati																								Г					Т	
CLASSE mammiferi																								Г					T	
ORDINE insettivori																													Т	
FAMIGLIA soricidi																													T	
GENERE Sorex																														
SPECIE araneus																									1					
FAMIGLIA miocastoridi																														
GENERE Myocastor																														
SPECIE coypus	1																								1					
FAMIGLIA cervidi																														
GENERE Capreolus																														
SPECIE capreolus	1																												\Box	
PHYLUM ascomiceti																														
GENERE Tuber											7	5	4	3	4	2	2	2	3	2										
SPECIE Tarzetta catinus											2	1		2	1	2		2		1										
SPECIE Phialocephala fortinii	89	75	73	68	73	48	22	56	58	49	2	5	7				4	1												
SPECIE Cenococcum geophilum	1	3	1			2			1		1		6		2		3	1	1										\Box	
PHYLUM basidiomiceti																														
GENERE Xerocomus											5			3	1			1	2	1										
GENERE Boletus											4	2		3		1	1		1											
GENERE Hebeloma		2			3		25		6		1		8			4	4	4												
SPECIE Hebeloma mesophaeum	4	5	7	2	1	3	2	2	4	5		2	3	5	4	1	1	2	1	1										
SPECIE Paxillus involutus											54	68	59	60	68	54	57	59	53	75										
SPECIE Laccaria											1			2		4			2	3										
SPECIE Tomentella stuposa	4	5	2	2	2	4	5	1	2	3	1	4	5	2	2	3	2	5	1	1										
SPECIE Peziza badia											2	1				1	1		1											

Tabella 1 - Taxa campionati, appartenenti ai 6 Phyla identificati dal Progetto, ed abbondanze per ciascun sito e plot.

In totale sono stati identificati 51 taxa. I risultati delle analisi sulle comunità hanno evidenziato **valori di richness alta per gli artropodi (28 max) e assenza di specie ec-** **tomicorriziche nel sito di Gazzo Veronese.** Il valore massimo di specie dominanti (5) si è rilevato nel sito di Gazzo, nel Phylum artropodi.

La varianza più elevata si è individuata per il Phylum ascomiceti ectomicorrizici nel sito di S. Matteo (440,081), in particolare nel plot "pioppeto puro" (793,692).

Le comunità hanno evidenziato una distribuzione binomiale negativa (indice di Poisson >>1), indice di una una over dispersione dei taxa campionati. Tale risultato è probabilmente relazionato ad una distribuzione a clusters nelle frequenze delle specie identificate. La diversità tra specie, studiata con l'indice di Shannon, ha eviden-

ziato i elevati valori più elevati per gli artropodi, in particolare nel sito di Gazzo Veronese (2,181).

La probabilità che due individui selezionati a caso appartengano alla medesima specie, misurato dall'indice di Simpson, ha evidenziato valori medi molto simili ad eccezione del Phylum anellidi, sito S. Matteo, plot impianto policiclico misto, che ha evidenziato, con un valore uguale ad 1, nessuna variazione e, per il Phylum

ascomiceti ectomicorrizici, nel plot pioppeto puro, un valore indicatore simile (0,974).

I risultati dell'indice di Brillouin evidenziano un alto valore (3,647) per il taxon basidiomiceti ectomicorrizici, nel pioppeto puro di S. Matteo. Questo dato viene comunque considerato poco attendibile, per il fatto che tale indice non riuslta realmente appropriato per la metodologia di campionamento applicata, che prevedeva una casualità completa nel prelievo dei campioni.

Conclusione

Considerazioni e confronti più dettagliati rispetto a quelli su esposti potranno essere effettuati solo dopo la previswta seconda epoca di osservazioni.

MESE E ANNO CAMP.			apr-14 Gazzo	S. Matteo delle	Gazzo
SITO	S. Matteo delle Chi	, ,	Veronese (VR)	Chiaviche (MN)	Veronese (VR)
PLOT	pioppeto puro (prox utilizz)	piantag polic mix	ex coltiv.		
Phylum molluschi					
Richness (S)	2	3	2	3	2
N° sp. dominanti	2	2	2	2	2
Varianza	33,954	8,345	0,064	22,599	0,064
Dev. Standard	5,827	2,889	0,254	4,754	0,254
Coeff. variazione	1,589	2,889	3,806	2,037	3,806
Poisson	268,545	242,000	28,000	571,429	28,000
Shannon-Wiener	0,261	0,389	0,693	0,313	0,693
Simpson	0,865	0,816	0,500	0,853	0,500
Brillouin	0,243	0,314	0,347	0,289	0,347
Phylum anellidi					
Richness (S)	2	1	1	2	1
N° sp. dominanti	2	1	1	2	1
Varianza	0,168	0,095	0,095	0,131	0,095
Dev. Standard	0,410	0,308	0,308	0,362	0,308
Coeff. variazione	2,052	3,078	3,078	2,411	3,078
Poisson	16,000	18,000	18,000	21,667	18,000
Shannon-Wiener	0,693	0,000	0,012	0,637	0,012
Simpson	0,500	1,000	1,000	0,556	1,000
Brillouin	0,780	0,000	0,000	0,451	0,000
Phylum artropodi					
Richness (S)	20	17	28	22	28
N° sp. dominanti	4	3	5	4	5
Varianza	50,939	16,754	41,775	34,001	41,775
Dev. Standard	7,137	4,093	6,463	5,831	6,463

Coeff. variazione	3,794	3,969	4,169	4,002	4,169
Poisson	8637,601	5166,782	8545,042	14890,340	8545,042
Shannon-Wiener	1,952	2,001	2,181	2,074	2,181
Simpson	0,228	0,221	0,221	0,217	0,221
Brillouin	1,892	1,909	2,088	2,027	2,088
Phylum cordati					
Richness (S)	2	0	2	2	2
N° sp. dominanti	2	0	2	2	2
Varianza	0,064	0,000	0,064	0,033	0,064
Dev. Standard	0,254	0,000	0,254	0,181	0,254
Coeff. variazione	3,806		3,806	5,431	3,806
Poisson	28,000		28,000	58,000	28,000
Shannon-Wiener	0,693	0,000	0,693	0,693	0,693
Simpson	0,500	0,000	0,500	0,500	0,500
Brillouin	0,347		0,347	0,693	0,347
Phylum ascomiceti					
Richness (S)	2	4	0	4	0
N° sp. dominanti	1	4	0	1	0
Varianza	793,692	3,946	0,000	440,081	0,000
Dev. Standard	28,173	1,986	0,000	20,978	0,000
Coeff. variazione	1,821	1,019		2,408	
Poisson	2000,257	3831,244		3990,403	
Shannon-Wiener	0,069	1,291	0,000	0,413	0,000
Simpson	0,974	0,301	0,000	0,821	0,000
Brillouin	0,066	1,209		0,403	
Phylum basidiomiceti					
Richness (S)	3	8	0	8	0
N° sp. dominanti	3	3	0	4	0
Varianza	10,221	395,935	0,000	216,717	0,000
Dev. Standard	3,197	19,898	0,000	14,721	0,000
Coeff. variazione	2,532	2,220		2,879	
Poisson	639,594	3489,974		6739,946	
Shannon-Wiener	1,096	0,714	0,000	0,998	0,000
Simpson	0,335	0,721	0,000	0,565	0,000
Brillouin	3,647	0,692		0,977	

BIBLIOGRAFIA

FISHER R. A., CORBET A. S., WILLIAMS C. B., 1943 - The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12: 42-58.

 \mbox{Hoel} P. G., 1943 - $\mbox{On Indices of Dispersion.}$ Annals of Mathematical Statistics 14 (2): 155-162.

 $\mbox{\it Magurran}$ A. E., 2004 - $\mbox{\it Measuring biological diversity.}$ Blackwell Publishing: Oxford, UK., 256 p.

REPORT SULLA VARIAZIONE DELLA BIODIVERSITÀ VEGETALE E ANIMALE

di Lucio Montecchio Dipartimento Territorio e Sistemi Agro-Forestali Università degli Studi di Padova In riferimento all'attività in oggetto, si comunica che ad oggi sono stati effettuati tutti i campionamenti, le osservazioni e le elaborazioni statistiche previste.

Le località oggetto d'indagine nel 2014 sono state Gazzo Veronese (VR) e S. Matteo alle Chiaviche (MN). In quest'ultimo sito i campionamenti sono stati effettuati sia in un pioppeto puro di prossima utilizzazione (10) sia in una piantagione mista policiclica (10).

Nel 2017, in accordo col progetto, le osservazioni sono state svolte nel sito di Gazzo Veronese. Allo scopo di fornire ulteriori indicazioni, osservazioni non previste sono sono state effettuate anche nel sito policiclico di San Matteo alle Chiaviche, ad esclusione di quelle relative alla micoflora.

In ogni sito sono stati effettuati 10 campionamenti in altrettante aree di saggio.

Per ciascun taxon indentificato a livello sistematico, appartenente ai Phyla molluschi, anellidi, artropodi, cordati, ascomiceti e basidiomiceti ectomicorrizici sono state calcolate le abbondanze.

Le comunità sono state poi descritte secondo i seguenti parametri:

- Numero di specie (taxon) Richness (S),
- Numero di specie (taxon) dominanti (aventi frequenza rel. >0.05)
- Varianza
- · Dev. Standard
- · Coeff. di variazione
- Indice di Poisson
- · Indice di Shannon-Wiener
- Indice di Simpson
- Indice di Brillouin

Risultati complessivi

Per i siti di riferimento sono state usate le seguenti codifiche: PPPU 14 = Pioppeto Puro S. Matteo, 2014 PPM 14 = Piantagione Policiclica S. Matteo, 2014 PI 14 = Gazzo, 2014 PPM 17 = Piantagione Policiclica S. Matteo, 2017 PNI 17 = Gazzo, 2017

DATA campionamento	Г	_	_	_	_	_	_	_	_	_	_	_	_	An	rile	201	14	_	_	_	_	_	_	_	_	_	_	_	_	71	Г	_	_	_	_	_	_	6	ilugi	no 2	201	7	_	_	_	_	_	_	_
SITO campionamento	Н					-	. M	atte	n d	ماله	Chi	avid	he l	÷			-						Gaz	20 V	lore	ones	ρN	/Rì		t	١,	. Ma	tter	del	le C	hias	vich		_	T			2770	n Va	eror	200	e (VF	e)	_
			not	o Di	ıro							Pian	_	_	÷	dist	dles	. 8.6	icto	-	-	_				pian	÷	ng	_	Н	_	Piar						_	_	+	_						mpia	_	_
TIPOLOGIA piantagione	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	10		<u>. 1</u>	_	_	_	6	_	٠	٠	+	_	_	<u> </u>	_	_	_	_	_	_	.l.	_		_	_	_	_	<u> </u>	_	10
PLOT	1	-	3	14	,	ľ	ľ	8	9	10	1	4	3	1)	0	/	ð	9	10	1	-	3	1	2	D	4	0	9 1	٧	÷	-	3 1	1	10	Τ΄	10	19	10	Ŧ	Ŧ	-	-	+	9 (+	10	13	10
PHYLUM Mollusca	Н		Н	Н	١.	ŀ.	Н		1		Н	7	7	-	-		7	-	-	۲	7	-	7	-	7	-	+	+	٧.	Н	Н	Н	+	۳	١,	۳	٠	۳	۳	۳	Ŧ	1	1	۳	٠	۳	٠	۲	۳
ORDINE Pulmonata	Н	1	╀	╀	1,	1	╀	1	1	3	Н	+	+	\dashv	\dashv	1	+	+	\dashv	Н	Н	+	\dashv	Н	+	+	+	+	+	4	Н	Н	+	+	1	+	+	╀	+	╀	+	+	+	+	+	+	+	+	⊢
FAMIGUA Helicidae	H	H	╀	╀	₽	╀	╀	⊢	Н	Н	Н	\dashv	+	\dashv	\dashv	Н	\dashv	\dashv	\dashv	+	Н	\dashv	\dashv	\dashv	\dashv	+	+	+	+	4	Н	Н	+	+	+	+	+	╀	╀	+	+	+	+	+	+	+	+	+	⊢
GENERE Helix	H	H	╀	╀	₽	₽	╀	⊬	Н	Н	Н	_	4	4	\dashv	Н	\dashv	\dashv	Н	_	Н	\dashv	4	Н	\dashv	+	+	+	+	4	Н	Н	+	+	╀	+	+	╀	+	+	+	+	+	+	+	+	+	+	⊢
SPECIE pomatía	H	L	╀	╀	₽	╀	╀	⊢	Н	Н	Н	1	4	4	4	Н	4	4	\dashv	1	Н	4	4	Н	4	+	4	+	+	4	Н	1	+	+	+	+	+	╀	1	+	+	+	+	+	+	+	+	+	╀
FAMIGUA Arionidae	L	L	╀	╀	₽	₽	╀	⊢	Н	Н	Н	4	4	4	4	Н	4	4	4	4	Н	4	4	Н	4	4	4	+	+	4	1	1	+	+	+	+	+	╀	╀	+	4	+	+	+	+	+	+	$^{+}$	╀
GENERE Arion	L	L	╀	╀	L	L	L	L	Н	Н	Н	4	4	4	4	Н	4	4	4	4	Н	4	4	4	4	4	4	+	+	4	Н	Н	4	+	+	+	+	+	╀	+	4	+	+	+	+	+	+	$^{+}$	╀
SPECIE lusitanicus	4	12	10	8	8	6	12	2	19	21	Ш	4	1	4		1	1	15	4	5	4	_	4	4	4	4	4	1	4	Н	Ц	Ц	4	15	1	1	. 3	1	5	ļ.	4	4	4	4	4	4	+	╁	L
PHYLUM Anellida			H	μ	Н	L	L	Н				П	Щ	4			Щ	Ц	Щ	Щ	Щ		4		Щ	Щ	4	4	4	ų,	ш	Щ	4	Ψ	H	¥	4	μ	۳	Į.	Ψ	2	4	Ŧ	Ψ	Ψ	#	H	F
SUBCLASSE Hirudinea	L	L	╀	╀	╄	┡	╀	1	Н	1	Н	4	4	4	4	Ц	4	4	1	1	Ц	4	4	Ц	4	4	4	4	4	4	Ц	Ц	4	4	+	+	+	╀	╀	4	4	4	4	4	4	+	$^{+}$	$^{+}$	╄
SUBCLASSE Oligochaeta	1	L	L	L	L	L	L	L	Ш	1	Ц	4	4	4		Ц	_		_		Ц	_	4	4	4	_	4	4	1 1	Ц	Ц	Ц	4	1	L	1	1	L	L	ļ.	4	4	1	1	4	1	1	1	1
PHYLUM Arthropoda			L	L	ш	L	L	ш				Щ	Ц				Щ		Ц	Ц	Щ	Щ		Щ	Щ	Щ	4	4	4	ч	Ш	Щ	4	Ψ	Ψ	Ψ	4	Ψ	μ	1	4	4	4	щ	4	Ψ	4	ļ.	μ
SUBPHYLUM Chelicerata	L	L	1	1	L	L	L	L	L	Ц	Ц	4	4	4	Ц	Ц	Ц	Ц	Ц	Ц	Ц	_	4	Ц	4	\perp	4	4	4	4	L	Ц	1	1	1	1	1	1	1	1	1	1	1	1	1	1	\perp	1	\perp
CLASSE Arachnida	13	13	11	13	17	36	4	2	2	3	19	1	1	1	3	13	3	10	Ц	2	82	7	23	8	8	17	8	19	6 3	5	5	_	-	1 5	8	7	5	6	10) 6	4	4 1	0 1	5	2 8	4	13	3 6	25
(SUBPHYLUM) Mandibulata	L	L	L	L	L	L	L	L	L	Ц	Ц	Ц	4	_	Ц	Ц	Ц	Ц	Ц	Ц	Ц	\Box	_	Ц	4	4	4	4	4	\downarrow	L	1	1	1	ļ	1	1	ļ	1	1	1	1	1	1	1	1	\perp	\perp	\perp
SUBPHYLUM Crustacea	L	L	1	L	L	L	L	L	Ц	Ц	Ц	Ц	\perp	\perp	Ц	Ц	Ц	Ц	Ц	Ц	Ц	\Box	_	Ц	\Box	\perp	4	1	1	4	\sqcup	Ц	1	1	ļ	1	1	ļ	╀	1	1	1	1	1	1	1	\perp	\perp	\perp
CLASSE Malacostraca	L	L	L	L	L	L	L	L	Ц	Ц	Ц	Ц	\perp	\perp	Ц	Ц	Ц	Ц	Ц	Ц	Ц	Ц	╛	Ц	Ц	\perp	4	1	1		\sqcup	Ц	1	1	ļ	1	1	ļ	╀	1	1	1	\downarrow	1	1	1	\perp	\perp	\perp
ORDINE Isopoda		L	L	L	L	L	L	L	Ц	Ц	Ц	Ц	_	_			Ц				Ц		_	Ц	Ц	_	1	4	1	Ц	Ц	Ц	4	1	ļ	1	┸	L	┸	1	1	1	1	1	1	1	\perp	\perp	L
FAMIGUA Oniscidae	L	L	L	L	L	L	L	L	L	Ц	Ц	Ц	_	_		Ц	Ц	Ц			Ц	\Box	_	Ц	\perp	\perp	1	1	1	Ц	L	Ц	1	1	1	\downarrow	\downarrow	1	\perp	1	1	\downarrow	1	1	1	1	\perp	\perp	\perp
GENERE Porcellia	L	L	L	L	L	L	L	L	L	Ш	Ш		\perp								Ц				\perp	\perp	╛	\perp	⊥	Ш	Ц	Ц	1	⊥	L	┸	┸	L	L	┸	\perp	\perp	\perp	1	1	\perp	\perp	\perp	L
SPECIE scaber	8	2	2	1	2	L	L		5	15								6			54	1	1					3	2	Ш		1	2	ı		3	2	2	L	12	2 1	8 :	1 5	5	1	1 1	2 3	1	1
CLASSE Chilopoda						L																												2	1			L		1	1 2	2	3	3		ŀ	2		
CLASSE Diplopoda	3				2	2	1		1	9								4			3		4		3				Ι			1	1	Ι		Ι	4			1	1	1	3	Ι	Ι	Ι	\perp		
CLASSE Insecta		1		Γ					4			2						1									4	Т	5	5	7		Т	Ι	Ι	6	1	Ι	Γ	Ι	Ι	Т	3	3	Τ	Ţ	4	6	5
ORDINE Collembola			Γ	Γ	Г	Г	Г										1							1	1		1	Т	Τ	1	1	1	Т	Τ	Τ	Τ	Τ	Τ	1	Τ	Τ	-	5 2	2 :	1	Ţ	ıΤ	Τ	Г
ORDINE Orthoptera			Γ	Γ	Г																				П			Т	Τ	1		П	Т	ı		Τ	Τ	Τ	Γ	Τ	T	Т	Τ	Τ	Τ	Τ	Τ	Τ	Г
SPECIE forma juv.	1	1	1	Γ		2	1		4	1			\Box													1	Ι	Τ	Τ	1	1	3	3	1	I	Ι	8	6	2	Τ	Ι	1	ı	Ι	Τ	Ι	Ι	Ι	1
FAMIGUA Gryllidae			Γ	Г	Г	Г	Γ	Г				П	П	П					П		П	П	\neg	П	П	П	Т	Т	Т	1	П	П	Т	1	Τ	Τ	Т	Т	Т	1	1 4	4 1	ı	Т	Т	Τ	1	Т	Г
ORDINE Rhynchota	Г	Г	Т	Т	Г	Г	Г	Г	П	П	П	П	T	╗	П		П	П	П	П	П	П	╗	П	T	Т	T	Т	Т	1	П	П	Т	Т	Т	Т	Т	Т	Т	1	1	1	2 6	6	Т	1	ıΤ	2	3
FAMIGUA Aphrophoridae	Г	Г	Т	Т	Г	Г	Г	Г	П	П	П	П	╛	\neg		П	\neg		П		П	П	٦	П	T	Т	T	T	Т	1	П	П	T	ī	2	1	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	Т	Т	Г
FAMIGUA Miridae	Г	Г	Т	Т	Г	Г	Г	Г	Г	П	П	П	٦	٦	П	П	П	П	П	П	П	\neg	╗	П	T	Т	T	T	Т	1	П	П	Т	1	1	Т	1	1	Т	3	1	10 3	3	Т	7	ī	Т	Т	Г
FAMIGUA Aphididae	Г	Г	Т	Т	Г	Г	Г	Г	П	П	П	П	T	\neg					П		П	П	٦	П	П	Т	T	Т	Т	1	П	3	Т	Т	Т	Т	3	Т	Т	7	īΤ	Т	1	1 :	1	Т	Т	Т	Г
Afide alato	Г	1	T	T	Т	T	T	Г	Г	П	П	T	7	┪	П	П	٦	٦	\exists	П	П	\exists	1	2	T	T	7	T	T	1	П	П	T	T	T	Ť	Ť	T	Т	Ť	Ť	T	Ť	Ť	T	Ť	T	T	Т
FAMIGUA Cicadellidae	Г	Г	T	T	Т	Τ	T	Г	П	П	П	┪	┪	┪	П	П	┪	\neg	П	Т	П	\exists	┪	П	┪	╛	T	T	T	11	1	П	T	Ť	T	T	Ť	T	T	Ť	Ť	T	Ť	T	T	Ť	T	T	Т
FAMIGUA Psyllidae	Г		T	T	T	T	T	Γ	П	П	П	7	7	7	\exists	T	7	T	\forall	T	T	7	7	T	7	\forall	†	\dagger	\dagger	1	1	П	†	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	\dagger	Ť	Ť	Ť	Ť	\dagger	T	Τ
ORDINE Dermaptera	Г	Г	T	T	T	T	T	Γ	Г	П	П	7	7	7	\forall	П	T	T	\forall	T	П		\forall	T	7	\forall	†	\dagger	\dagger	1	Г	П	†	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	1	Ť	†	†	Ť	\dagger	†	Т
ORDINE Coleoptera	1		4	T	T	T	T	Τ	П	П	П	7	7	7	\forall	T	7	T	\forall	T	1	1	7	T	7	\forall	†	\dagger	\dagger	1	18	3	1	,	6	1	T	Ť	18	1	ı	15 2	0	Ť	1	, 1	3 17	2 21	11
FAMIGUA Curculionidae	Г	Г	T	T	T	T	T	Γ	Г	П	П	7	7	7	\forall	П	T	T	\forall	T	П		\forall	T	7	\forall	†	\dagger	\dagger	1	Г	П	†	1	1	T	Ť	T	1	+	Ť	1	Ť	†	Ť	Ť	\top	\top	Т
GENERE Lixus	Г		T	T	T	T	T	T	Г	П	П	T	1	7	\forall	П	T	T	\forall	T	7	\forall	7	T	7	\forall	†	\dagger	Ť	1	Г	П	†	Ť	Ť	Ť	Ť	Ť	Ť	17	,†	\dagger	Ť	Ť	†	Ť	\dagger	\uparrow	Τ
FAMIGUA Carabidae	Г	11	t	T	T	T	4	Τ	8	2	1	7	7	4	\forall	П	7	T	\forall	T	H	1	7	T	7	\forall	†	\dagger	\dagger	1	1	П	1	1 3	T	10	0	Ť	Ť	Ť	†	\dagger	\dagger	†	†	Ť	\dagger	†	Τ
GENERE Carabus	Г		Ť	t	T	T	T	T	П	П	П	7	7	7	\forall	T	7	T	\forall	T	T	7	7	T	7	\forall	†	\dagger	\dagger	1	П	\sqcap	†	Ť	Ť	Ť	Ť	Ť	Ť	t	†	\dagger	\dagger	Ť	†	†	\dagger	†	Τ
SPECIE granulatus	Н	4	2	1	4	4	t	T	4	6	Н	\forall	7	7	1	4	H	4	\forall	H	2	7	1	H	+	\forall	+	\dagger	1		Н	H	†	†,	4	t	14	t	Ť	1,	2 :	7	\dagger	†	†	†	\dagger	†	T
GENERE Pterostichus	H	Ť	Ť	Ť	Ť	Ť	t	T	Ť	Ħ	Н	+	+	+	Ĩ	H	+		\forall	H	Ť	+		H	+	\forall	\dagger	\dagger	1	41	Н	\forall	†	ť	ť	†	۲	t	t	ť	Ť	+	†	†	†	†	+	+	16
SPECIE melos	2		t	t	t	t	t	t	Н	H	H	\forall	+	+	\forall	Н	H	12	\forall	H	6	\forall	+	H	\forall	\forall	\dagger	\dagger	+	1	H	H	\dagger	t	t	t	12	2	Ť	1,	2	\dagger	\dagger	1	4	†	†	+	۲
GENERE Nebria	ŕ	-	1,	62	56	66	4	3	25	22	18	4	+	4	13	15	-	$\overline{}$	8	4	\rightarrow	3	14	3	+	\forall	+	15	1,	1	7	\forall	1	1	15	5	+	8	4	+	+	3	1	3 4	-	†	+	+	9
SPECIE brevicollis	1	Ť	ť	۲	۲	۲	Ť	Ť	f	Ĥ		1	+	+			-		Ť		17		-	_	1	17	Ť	+	+	1	H	Н	+	†	۲	+	ť	ť	Ť	13	-	+	†	+	1	,	$^{+}$	+	Ť
GENERE Anchomenus	ŕ		t	t	t	t	t	t	Н	Н	Н	\forall	+	+	\forall	Н	\forall	H	\forall	H		+	+	Н	1		+	+	†	1	Н	H	+	†	+	\dagger	†	†	t	ť	†	\dagger	1	1	ť	†	$^{+}$	+	†
SPECIE dorsalis	3	9	,	3	11	t	2	4	H	38	Н	+	+	2	\forall	2	\forall	\forall	\forall	H	\forall	+	+	\forall	+	+	\dagger	5	+		H	\forall	+	†	12	+	+	+	$^{+}$	†	+	\dagger	-	2	+	+	5	+	1
GENERE Amara	ŕ	ŕ	۲	1	-	t	ť	2	H	-	4	\forall	+	-	\dashv	2	\forall	10	12	20	H	\forall	\dashv	H	\forall	5	+	-	1	+	H	\forall	+	+	2	+	10	17	2 20	1	+	+	Τ,	-	4 5	†	ť	30	-
SPECIE geneg	H		t	†	t	t	t	Ė	H	Н	H	\forall	+	+	\forall	-	\forall			-	1	+	+	1	+	+	+	+	+	+	H	Н	+	+	+	+	۳	۳	+	+	+	+	+	-	Ŧ	+	+	۳	+
FAMIGUA Scarabaeidae	H		+	+	+	+	+	\vdash	H	Н	Н	+	\dashv	\dashv	\forall	Н	\forall	Н	\forall	Н	+	\dashv	3	-	2	1	1	+	+	+	H	Н	+	$^{+}$	+	+	+	+	+	†,	+	7 :	-	+	+	1 1	+	11	15
FAMIGUA Geotrupidae	H		+	+	H	+	+	\vdash	Н	Н	Н	+	+	\dashv	\forall	Н	\forall	\forall	\forall	Н	\forall	\dashv	1	\forall	+	1	+	+	+	+	H	Н	+	+	+	+	+	+	+	ť	+	7	-	4	-	1	1	-	۳
FAMIGUA Coccinellidae	\vdash	-	+	+	+	+	+	\vdash	H	Н	Н	+	+	\dashv	\dashv	Н	+	\dashv	\dashv	+	Н	+	\dashv	1	1	+	+	+	+	+	H	\forall	+	+	+	+	+	+	+	+	+	+	+	1	+	+	+	+	\vdash
FAMIGUA Coccinellidae	\vdash	-	+	+	+	+	1	\vdash	Н	Н	1	,	+	,	2	,	+	Н	\dashv	Н	\dashv	+	\dashv	1	-	3	+	+	+	+	22	Н	+	2 2	1	+	+	+	+	13	+	+	-	-	, ,	+	3 3	+	\vdash
rawioua stapitylinioae	Ш	_	L	L	L	_	I,	_	Ш	Ш	1	4		-	4	4	Ш	Ш	Ш	Ш	Ц			\Box	Ц	3					"	Ш	1	14	14	1	_	1	\perp	13	1		14	- 1	<u>' [:</u>	413	1 3	1,	_

OPDINE Diebers			Г	Т	5			П	\neg	1	1 :	. T	Т	Т	1	1	T ₃	Т	Г		5	2	Т	2	, T	Т	Т	Т	33	, [П	Т	3 1	1	12	Т	Т	Т,	1	1 2	Т	1	П	4	Т	Т	٦
ORDINE Diptera	Н	H	┝	⊢	3	Н	Н	Н	+	4	+	+	+	+	+÷	ť	ť	╁	⊦	Н	3	-	+	-	+	+	+	١,	Hå	+	Н	+	3 1	+	ť	₩	╀	ť	Ή.	+	+	Ĥ	Н	7	+	+	\dashv
FAMIGUA Syrphydae	H		⊢	⊢	١.	Н	Н	H	\dashv	.+		+	+	+	+.	+.	╀	ł,	١.	Ļ	H	\dashv	\dashv	+	1 2	+	+.	1	╟	+	Н	+	+.	+	╀	╀	+.	╀	+	+	+	H	Н	+	+	+	\dashv
FAMIGUA Tipulidae	1	1	⊢	⊢	1	Н	Н	1	+	4	1	+	+	+	+1	1	₽	Ľ	1	5	_	\dashv	+	1	114	+	4	-	⊬	1	Н	+	+	+	╀	١.	1	+	╀	+	+	1	Н	+	-	4	\dashv
FAMIGUA Culicidae	Н	H	┝	⊦	H	Н	Н	Н	+	+	+	+.	+	+	+	╀	╀	╀	⊦	Ŀ	2	\dashv	+	+	+	+.	3	+	╟	╀	Н	+	+.	+	╀	1	╀	╀	╀	+	١.	Н	Н	+	-	3	\dashv
FAMIGUA Muscidae	Н	H	⊢	⊢	Н	Н	Н	Н	\dashv	+	+	1	+	+	+	╀	╀	╀	⊢	2	Н	\dashv		+	+	1	+	+	⊬	╀	Н	+	1	4	╀	₽	╀	╀	╀	+	1	Н	Н	+	1 1	4	\dashv
FAMIGUA Tabanidae	Н	H	⊢	⊢	H	Н	Н	Н	+	+	+	+	+	+	+	╀	╀	╀	⊢	H	Н	Н	1	+	+	+	+	+	⊬	╀	Н	+	+	+	╀	١.	+.	╀	╀	+	+	Н	Н	+	+	+	\dashv
FAMIGUA Simuliidae	Н		١.	١.		Н		Н	+	+	+	+	+	+	+.	+	١.	₽	ŀ.	H	Н	\dashv	+	+	+	+	+	+	H-	+	Н	+	- (+	+	8	+	-	+	+	١.	H	Н	+	+	+	+
ORDINE Hymenoptera	_	-	14	3	-	_	3	Н	-	-	1	+	+	+	+	1	-	-	1	Ŀ	Н	_		+	+.	+	+.	+	7	-	H	+	1	-	3	-	1	-	-	+	1	_		+	_	1	_
FAMIGUA Formicidae	1	1	⊢	⊢	1	Н	3	Н	\dashv	1	6	4	+	+	1	╀	 	1	1	/	Н	1	3	+	. 8	+	6	+	1 12	8	21	+	_	-	1 25	19	1	110	5 3.	1 56	17	10	$\overline{}$	18	ť	27	18
FAMIGUA Braconidae	Н	Н	H	Н	Н	Н		Н	4	ł	٠	٠	÷	٠	٠	H	н	Н	Н	Н	Н	-	4	÷	1	٠	٠	н	Н	2	Н	÷	1	+	н	н	H	٠	٠	٠	2	Н	1	4	\pm	\pm	Н
PHYLUM Chordata	Н	Н	H	Н	Н	Н	Н	Н	7	4	+	٠	۳	٠	٠	Н	۳	Н	H	Н	Н	-	7	+	٠	٠	٠	۰	Н	۰	Н	7	٠	٠	۳	۳	۲	٠	۳	۰	Н	Н	Н	+	4	7	4
CLASSE Reptilia	Н	H	⊢	⊢	H	Н	Н	Н	\dashv	+	+	+	+	+	+	╀	╀	╀	⊢	H	Н	\dashv	+	+	+	+	+	╀	⊬	╀	Н	+	+	+	╀	₽	╀	╀	╀	+	\vdash	Н	Н	+	+	+	\dashv
ORDINE Squamata	Н	H	⊢	⊢	H	Н	Н	Н	+	+	+	+	+	+	+	╀	╀	╀	⊢	H	Н	\dashv	+	+	+	+	+	╀	╟	╀	Н	+	+	+	╀	╀	╀	╀	+	+	+	Н	Н	+	+	+	\dashv
FAMIGUA Lacertidae	Н	H	┡	⊢	H	Н	Н	Н	4	4	+	+	+	+	+	╀	╀	₽	H	L	Н	\dashv	4	+	+	+	+	+	⊬	╀	Н	+	+	+	╀	╀	╀	+	+	+	\vdash	Н	Н	+	+	4	4
GENERE Podorcis	Н	H	┡	⊢	⊢	Н	Н	Н	4	4	+	+	+	+	+	╀	╀	╀	┡	H	Н	4	4	+	+	+	+	╀	╟	╀	Н	+	+	+	╀	╀	╀	+	+	+	╀	Н	Н	+	+	4	\dashv
SPECIE muralis	Н	H	L	⊢	H	Н	Н	Н	4	4	+	+	+	+	+	╀	╀	╀	H	L	Н	\dashv	4	+	+	+	+	+	⊬	╀	Н	+	1	4	╀	╀	╀	+	+	+	\vdash	Н	Н	+	+	4	4
CLASSE Mammalia	Н	H	-	-	1	Н	\vdash	Н	4	4	+	+	+	+	+	+	+	1	1	\vdash	Н	4	4	4	+	+	+	+	1	+	Н	4	+	+	+	1	1	+	+	+	\vdash	Н	Ц	+	4	4	4
ORDINE Insectivora	Н	H	-	\vdash	\vdash	Н	Н	Н	4	4	+	+	+	+	+	+	+	╀	\vdash	L	Н	\sqcup	4	+	+	+	+	+	H	+	Н	4	+	+	+	╀	╀	+	+	+	\vdash	Н	Ц	+	4	4	4
FAMIGUA Soricidae	Ц	L	1	\vdash	L	Н	Н	Ц	4	4	4	+	1	+	1	1	╀	╀	\vdash	L	Н	Ц	4	4	+	+	1	\perp	H	+	Н	4	+	+	+	╀	╀	+	1	+	1	Н	Ц	4	4	4	4
GENERE Sorex	Ц	L	L	\vdash	L	Н	Н	Ц	4	4	4	1	1	1	1	1	L	L	L	L	Ц	Ц	4	4	+	1	1	\perp	IL	╀	Ц	4	1	1	1	╀	╀	+	1	+	\perp	Ц	Ц	4	4	4	4
SPECIE araneus	Ц	L	L	\perp	L	Н	Ц	Ц	4	4	4	1	1	1	1	1	\perp	1	L	L	Ц	Ц	4	1	+	1	1	\perp	IL	1	Ц	4	4	1	1	L	╀	1	1	1	┡	Ц	Ц	4	4	4	╝
ORDINE Rodentia	Ц	L	L	\vdash	L	Н	L	Ц	4	4	4	1	1	1	1	1	\downarrow	1	L	L	Ц	Ц	4	4	+	1	1	\perp	IL	1	Ц	4	4	1	1	L	╀	1	1	+	┡	Ц	Ц	4	4	4	╝
FAMIGUA Microtidae	Ц	L	L	L	L	Ц	Ш	Ц	4	4	4	4	1	1	4	╀	╀	L	L	L	Ц	Ц	4	4	4	1	1	╀	IL	╀	Ц	4	4	4	╀	╀	╀	1	1	╀	╙	Ц	Ц	4	4	4	4
GENERE Microtus	Ц	L	L	L	L	Ц	Ц	Ц	4	4	4	4	1	1	1	ļ	Ļ	L	L	L	Ц	Ц	4	4	4	1	1	╀	IL	╀	Ц	4	4	1	╀	╄	Ļ	╀	╀	╀	╙	Ц	Ц	4	4	4	┙
SPECIE arvalis	Ц		L	L	L	Ц	Ш	Ц	4	4	4	1	1	1	1	L	╀	L	L	L	Ц	Ц	Ц	4	1	1	1	╙	IL	╙	Ц	4	4	╀	╀	┖	L	╀	╀	╀	L	Ц	Ц	4	4	1	╛
FAMIGUA Muridae	Ц	L	L	L	L	Ц	Ц	Ц	4	4	4	1	1	↓	1	┸	┸	L	L	L	Ц	Ц	4	4	1	1	┸	┸	IL	┸	Ц	4	4	╀	┸	┖	L	┸	┸	┸	L	Ц	Ц	4	4	4	╛
GENERE Apodemus	Ц		L	L	L	Ц		Ц	_	1	1	1	1	1	1	L	L	L	L	L	Ц	Ц	Ц	4	1	1	┸	L	IL	┖	Ц	4	1	┸	┸	L	L	┸	┸	┸	L	Ц	Ц	4	4	4	╛
SPECIE sylvaticus	Ц	L	L	L	L	Ц	Ц	Ц	4	4	4	1	⊥	⊥	⊥	L	L	L	L	L	Ц	Ц	4	4	1	┸	┸	┖	1	┸	Ц	4	1	┸	┸	L	L	┸	┸	┸	L	Ц	Ц	4	4	4	┙
FAMIGUA Myocastoridae			L	L	L			Ц	\perp	1	\perp	\perp	l	1	\perp	L	L	L	L		Ц			1	\perp	\perp	┸	L	IL	L	Ц	_	\perp	\perp	┸	L	L	┸	┸	\perp	L			\perp	\perp	\perp	
GENERE Myocastor				L						_								L	L		Ш			\perp					IL							L	L	L									
SPECIE coypus	1			L	L					_		\perp	l			L	L	L	L		Ш			1					IL		Ш	\perp		\perp	L	L	L	L							\perp		
ORDINE Artiodactyla																													$\ $						L	L		L									
FAMIGUA Cervidae												Ι	Ι	Ι	Ι	Ι								Ι		Ι	Ι							Ι	Ι	L		Ι	Ι	Ι					\perp	\Box	
GENERE Capreolus													Ι	Ι																																	
SPECIE capreolus	1									I	Ι	Ι	Ι	Ι	Ι	Ι	L	I						Ι	Ι	Ι	Ι					\Box	Ι	Ι	Ι	Γ	I	Ι	Ι	Ι				\Box	I	\Box	
DIVISIONE Ascomycota										T		Т	Τ	Τ		Π	Г	Γ								Т	Τ							Т	Т	П		Τ	Τ	Т					T	T	
GENERE Tuber										I	7 !	5 4	3	4	2	2	2	3	2					Τ	Τ	Τ	Ι			Γ		T	Τ	Τ	Γ	Γ	Γ	Τ	Ι	Ι				\Box	I	\Box	\Box
GENERE Tarzetta	П		Г	Г		П		П	П	T	Т	Т	Τ	Τ	Т	Т	Т	Г	Г	Г	П	П	П	Т	Т	Т	Т	Т	ΙГ	Т	П	Т	Т	Т	Т	Г	Т	Т	Т	Т	Г		П	Т	Т	Т	٦
SPECIE catinus				Γ	Γ	П				Ī	2	1	7	1	. 2	Γ	2	Γ	1							Γ	Γ	Γ		Γ		T		Γ	Γ	Γ	Γ	Γ	Γ						J	T	1
GENERE Phialocephala	П		Γ	Γ	Г					T		T	Γ	Γ	Τ	Γ	Γ			Г						Τ	Γ	Γ		Γ				Γ	Γ	Γ		Γ	Γ	Γ					J	J	7
SPECIE fortinii	89	75	73	68	73	48	22	56	58	49	2	5 7		Γ	Γ	4	1	Γ		Г						Τ	Γ					T		Γ	Γ	Γ	Γ	Γ	Γ	Γ					J	T	7
GENERE Cenococcum										1		T	T	T	T	Γ	Γ								T		T	Γ		Γ					Γ	Γ		Γ	T	Γ					T	1	1
SPECIE geophilum	1	3	1	Γ	Γ	2	Г		1	T	1	6		2	1	3	1	1		Γ				T	T	T	Γ	Γ	ΙГ	Γ		T	T	Γ	Γ	Γ	Γ	Γ	Γ	Γ					Ţ	J	1
DIVISIONE Basidiomycota										1			I														T								Γ			T	I						1	T	
GENERE Xerocomus			Г	Г	Г	П	Г			T	5	T	3	1		Г	1	2	1	Г				T	T	T	T	Г	ΙГ	Г	П	T	T	T	Γ	Γ	Γ	Τ	T	Т					T	T	7
GENERE Baletus	П		Г	Γ		П	П	П	7	7	4 3	2	1	1	1	1	-	1	-	Г	П		1	1	\top	T	Ť	Т	ΙT	Т	П	1		T	T	Γ	Γ	T	T	T		П		\top	Ť	T	7
GENERE Hebeloma	П	2	Г	Γ	3	П	25	П	6	-	1	8	-	Ť	-	-	4	-	Γ	Г	П	\forall	7	\dagger	\top	Ť	Ť	T	巾	T	П	7	\dagger	Ť	T	T	T	Ť	Ť	\top	Т	П	\sqcap	\top	†	7	٦
SPECIE mesophaeum	4	5	7	2	1	3	_	_	4	5	1	2 3	5	4	-	-	-	-	1	Г	П	П	7	\top	\top	Ť	Ť	T	巾	T	П	7	\dagger	Ť	Ť	T	T	Ť	Ť	T	Т	П	П	\top	†	7	٦
GENERE Paxillus	П	Г	Г	Г	Г	П	П	П	7	7	1	Ť	Ť	Ť	Ť	Ť	T	T	Γ	Г	П	T	7	†	\top	Ť	Ť	T	巾	T	П	7	\dagger	Ť	Ť	T	T	Ť	Ť	T	Т	П	T	\top	†	7	┨
SPECIE involutus	П	Г	T	T	T	П	П	П	\forall	1	54 6	8 5	9 6	0 6	8 5	57	59	53	75	Г	П	T	7	†	\dagger	Ť	Ť	T	巾	T	П	7	\dagger	Ť	Ť	T	T	Ť	Ť	Ť	Т	П	Ħ	\top	†	†	٦
GENERE Laccaria	П	Г	T	T	Т	Н	П	Н	7	_	1	Ť	1	-	4	-	Ť	-	3	_	Н	\forall	7	†	\dagger	\dagger	†	T	巾	T	Н	+	\dagger	\dagger	Ť	T	T	Ť	Ť	T	T	П	H	\top	†	†	┪
GENERE Tomentella	Н	Г	T	T	T	Н	Н	Н	\forall	+	\dagger	Ť	Ť	Ť	Ť	t	t	Ť	Ĺ	Г	Н	\forall	+	\dagger	†	\dagger	†	T	巾	T	H	+	\dagger	\dagger	t	t	t	†	†	†	T	Н	H	+	†	+	٦
SPECIE stuposa	4	5	2	2	2	4	5	1	2	3	1	4 5	1,	1,	3	12	5	1	1	Н	Н	\forall	+	\dagger	†	\dagger	†	†	巾	†	H	+	†	\dagger	†	t	t	†	+	†	T	Н	H	+	+	+	٦
GENERE Peziza	Н	ŕ	Ť	Ť	Ť	H	Ť	Н	+	+	+	+	۲	۲	ť	ť	Ť	Ť	Ť	Н	Н	\forall	+	\dagger	$^{+}$	\dagger	\dagger	†	lt	†	H	+	†	\dagger	t	t	t	†	†	\dagger	T	H	H	+	+	+	۲
SPECIE bodia	H	Н	t	t	t	Н	Н	Н	\forall	+	2	1	†	\dagger	1	1	t	1	t	Н	Н	\forall	+	+	+	\dagger	†	†	巾	t	Н	+	\dagger	\dagger	†	t	t	†	+	\dagger	T	Н	H	+	+	+	۲
	_	_	_	_	_	_	_	_	_	_	- 1 '	_	_	_	1.	1.	_	-	_	_	Н	_	_	+	_	_	+			_	_	_	_	_	-		_	_	+	1	_	_	_	_	_	_	_

ORDINE Diptera	П		Г	Τ	5	Τ	Γ	Г	П	1	1	1	Т	Т	Т	1	1	3	Т	Т	15	5 2	1	2	2	Г	П	П	П	32	Г	П	П	3	1	1	2	Т		3	1	2	Т	1	Т	4	Т	Т	٦
FAMIGUA Syrphydae	Н	Н	t	t	Ť	t	t	t	Н	Ť	Ť	1	7	+	+	+	+	+	†	+	+	+	+	۲	۲	Н	Н	Н	1	۳	t	Н	H	1	7	+	7	7	\neg	H	Ť	1	+	+	†	+	†	$^{+}$	┪
FAMIGUA Tipulidae	1	1	t	t	1	t	H	1	Н	1	1	1	7	+	+	1	1	†	, †	١,	5 1	+	$^{+}$	1	1	,	Н	4	H	t	1	Н	\forall	7	1	+	+	7	1	Н	\vdash	+	+	1	+	$^{+}$	1	4	┪
FAMIGUA Culicidae	ŀ	Ė	t	t	ť	t	H	ŀ	Н	Ĥ	-	Ť	+	+	+	†	+	Ť	+	+	1 2	-	$^{+}$	ŀ.	Ť	Ť	Н	3	Н	H	Ť	Н	\forall	+	7	+	+	1	Ť	Н	Н	+	+	+	+	$^{+}$	+	3	┪
FAMIGUA Muscidae	Н	Н	t	t	H	t	H	H	Н	Н	Н	+	1	+	+	+	+	+	+	†	ı .	+	$^{+}$	t	H	Н	1	Ť	Н	H	H	Н	\forall	+	13	+	+	7	_	Н	\forall	+	1	+	+	١,	1 1	-	Ⅎ
FAMIGUA Tabanidae	Н	Н	t	t	H	t	H	H	Н	Н	Н	+	7	+	+	+	+	+	+	ť	+	$^{+}$	1	t	t	Н	Ĥ	Н	Н	H	H	Н	\forall	+	+	+	+	+	_	Н	\forall	+	+	+	+	ť	Ή	7	┪
FAMIGUA Simuliidae	Н	H	t	t	H	H	H	┢	Н	Н	Н	+	+	+	+	+	+	+	+	+	+	$^{+}$	Ŧ.	t	H	Н	Н	Н	Н	H	H	Н	\forall	+	6	+	+	8	1	Н	\forall	+	+	+	+	+	+	+	┪
ORDINE Hymenoptera	Н	6	4	3	1	H	3	H	Н	1	1	+	+	+	+	1	1	2	+	1	+	$^{+}$	$^{+}$	t	H	Н	Н	Н	Н	7	H	Н	\forall	-	1	+	3	+	1	2	\forall	+	1	1	+	+	+	1	1
FAMIGUA Formicidae	1	-	-	ť	1	-	3	H	Н	_	6	3	+	+	-	1	-	2	-	-	,	1	3	t	H	8	Н	6	Н	⊢	8	21	\forall	-	_	-	-	19	_	_	31 5	-	-	-	13 1	18	-	27 1	_
FAMIGUA Braconidae	Ť	Ė	t	t	۲	t	۲	t	Н	Ĥ	Ť	7	+	+	+	7	+	+	+	+	+	۲	۲	t	1	-	Н	H	Н	۳	2	H	\forall	_	1	7	+	+	-	Ħ	Ť	-	2	_	1	+	Ť	+	Ť
PHYLUM Chordata			t	t	h	h	h			Н		ı	ı	t	t	ı	t	t	t	t	t	t	t	t	Ė					h	ĺ	Н		ı	Ì	t	t	ı		Н		i	Ì	t	Ì	t	t	t	d
CLASSE Reptilia	П	Г	Г	Г	Т	Г	Г	Г	П	П	П	T	T	T	T	T	Т	T	Т	Т	т	т	т	Г	П	Г	П	П	П	Г	Г	П	П	7	T	T	T	T	_	П	П	T	Т	T	T	т	Т	Т	1
ORDINE Squamata	П	Т	t	T	T	T	T	T	П	П	П	┪	7	7	7	7	T	Ť	†	Ť	Ť	Ť	Ť	t	T	Т	П	П	П	t	T	П	T	┪	7	7	7	7	П	П	П	7	7	7	†	†	†	Ť	٦
FAMIGUA Lacertidae	Н	Н	t	t	t	t	t	t	Н	Н	Н	7	7	7	†	7	†	†	†	†	+	†	t	t	t	Н	Н	Н	Н	t	t	Н	\forall	7	7	†	7	7	\neg	П	П	7	7	+	†	†	†	†	٦
GENERE Podarcis	Н	Т	t	t	t	t	T	t	Н	Н	П	┪	7	7	†	7	+	Ť	†	†	+	Ť	t	t	t	Н	Н	П	Н	Ħ	T	Н	T	┪	7	†	7	7	Т	П	П	T	7	7	†	†	†	†	┪
SPECIE muralis	Н	Т	t	t	t	T	T	T	Н	Н	П	7	7	7	†	7	†	†	†	†	+	†	t	t	t	Т	Н	П	П	t	T	Н	T	┪	1	7	7	7		П	Π	7	7	7	†	†	†	†	٦
CLASSE Mammalia	П	Г	t	T	T	T	T	Т	П	П	П	7	7	7	7	7	†	†	†	†	+	†	Ť	t	T	Т	П	П	П	T	T	П	T	7	7	7	7	7	Т	П	П	7	7	7	†	†	†	†	٦
ORDINE Insectivora	Н		T	T	T	T	T	T	П	Н	Н	7	7	\dagger	\dagger	7	†	†	†	†	†	Ť	Ť	T	T	Т	Н	Н	Н	Т	T	Н	7	7	+	†	†	7		П	\sqcap	7	7	†	†	\dagger	†	†	7
FAMIGUA Soricidae	H		t	t	t	T	T	T	Н	Н	Н	+	+	\dagger	\dagger	+	†	†	†	†	\dagger	\dagger	†	t	T	Т	Н	Н	Η	T	T	H	\forall	+	\dagger	+	+	+		П	\sqcap	+	+	\dagger	+	\dagger	†	†	1
GENERE Sorex	H		t	t	t	T	T	T	H	Н	Н	+	+	\dagger	+	+	†	†	†	†	†	\dagger	†	t	T	Т	H	Н	Н	T	T	H	\forall	+	\dagger	+	+	+	\exists	П	\sqcap	+	+	+	+	†	†	†	1
SPECIE araneus	Н	Н	t	t	t	t	t	t	Н	Н	Н	7	7	7	†	7	†	†	†	†	+	$^{+}$	$^{+}$	1	t	Н	Н	Н	Н	t	t	Н	\forall	7	7	†	7	7		Н	\sqcap	7	7	+	†	$^{+}$	†	+	T
ORDINE Rodentia	H		t	t	t	T	T	t	H	Н	H	+	+	\dagger	\dagger	+	†	\dagger	\dagger	†	\dagger	\dagger	Ť	Ť	T	Н	H	Н	Н	t	T	H	\forall	\dagger	\dagger	+	+	+		Н	\sqcap	+	+	\dagger	\dagger	\dagger	†	†	1
FAMIGUA Microtidae	Н	Т	t	t	t	t	T	t	Н	Н	П	7	7	7	†	7	†	†	†	†	+	Ť	t	t	t	Н	Н	П	Н	t	T	Н	T	7	7	7	†	7	Π	П	Π	7	7	†	†	†	†	†	↿
GENERE Microtus	Н	Н	t	t	t	t	t	t	Н	Н	Н	7	7	7	†	7	†	†	†	†	+	†	$^{+}$	t	t	Н	Н	Н	Н	t	t	Н	\forall	7	7	†	7	7	\neg	П	\sqcap	7	7	7	†	†	†	†	٦
SPECIE arvalis	П	Т	t	t	t	T	T	T	П	П	П	7	7	7	7	7	†	Ť	†	Ť	Ť	Ť	Ť	t	t	Т	П	П	П	t	T	П	T	┪	7	7	7	7	Т	П	П	7	7	7	†	†	Ť	1	٦
FAMIGUA Muridae	П	Т	t	t	t	T	T	T	П	П	П	7	7	7	†	7	†	Ť	†	†	+	Ť	Ť	t	t	Н	П	П	П	Ħ	T	Н	T	7	7	†	7	7	П	П	П	T	7	7	†	†	†	†	٦
GENERE Apodemus	П	Г	t	t	t	t	T	t	П	Н	П	7	7	7	†	7	†	†	†	†	+	†	T	t	t	Т	Н	П	П	t	t	Н	7	7	7	7	†	7	Π	П	Π	7	7	†	†	†	†	†	1
SPECIE sylvaticus	П	Т	t	t	T	T	T	T	П	П	П	7	7	7	7	7	†	Ť	†	Ť	Ť	Ť	Ť	t	t	Т	П	П	П	1	T	П	T	1	7	7	7	7	Т	П	П	7	7	7	†	†	†	†	٦
FAMIGUA Myocastoridae	П	Т	t	t	t	T	T	T	П	П	П	T	7	7	7	7	Ť	Ť	†	Ť	+	Ť	Ť	t	T	Т	П	П	П	Ħ	T	П	T	┪	7	7	7	7	Т	П	П	T	7	7	†	†	†	†	٦
GENERE Myocastor	П	Г	T	T	T	T	T	Т	П	П	П	7	7	7	7	7	7	†	†	†	†	†	T	t	T	Т	П	П	П	T	T	П	┪	┪	7	7	7	7		П	П	7	7	7	†	†	†	T	٦
SPECIE coypus	1	Т	t	t	T	T	T	T	П	П	П	7	7	7	7	7	Ť	Ť	†	Ť	Ť	Ť	Ť	1	t	Т	П	П	П	t	T	П	T	┪	7	7	7	7	Т	П	П	7	7	7	†	†	†	†	↿
ORDINE Artiodactyla	П	Т	t	t	T	T	T	T	П	П	П	7	7	7	7	7	†	Ť	†	†	†	Ť	Ť	t	T	Т	П	П	П	t	T	П	T	┪	7	7	7	7		П	П	7	7	7	†	†	†	T	٦
FAMIGUA Cervidae	П	Г	T	T	T	T	T	Т	П	П	П	7	7	7	7	7	Ť	Ť	Ť	Ť	Ť	Ť	T	T	T	П	П	П	П	Т	T	П	T	7	7	7	7	7		П	П	T	7	7	7	Ť	†	Ť	٦
GENERE Capreolus	П	Г	t	T	T	T	T	T	П	П	П	7	7	7	7	7	Ť	Ť	†	Ť	†	Ť	Ť	t	T	Т	П	П	П	t	T	П	T	┪	7	7	7	7		П	П	7	7	7	†	†	†	†	٦
SPECIE capreolus	1	Г	T	T	T	T	Г	Γ	П	П	П	┪	7	T	T	7	Ť	Ť	Ť	Ť	T	T	T	T	Т	Г	П	П	П	Г	T	П	\exists	7	T	7	7	7		П	П	7	7	7	Ť	Ť	Ť	T	٦
DIVISIONE Ascomycota			ı	T	T	T		ı				ı	ı		ı	ı	ı	Ť	Ì	t	t	T	T	T						T						ı	ı			П			ı	ı	ı	ı	ı	t	1
GENERE Tuber	П	Г	Г	Т	Г	Г	Г	Г	П	П	7	5	4	3	4	2	2	2	3	2	Т	Т	Т	Г	Т	Г	П	П	П	١	١	١	١	٦	V	V	١	١	١	П	П	┪	T	T	T	Т	T	Т	٦
GENERE Tarzetta	П	Г	T	T	Τ	Т	Г	Г	П	П		T	7	7	T	7	T	Ť	Ť	Ť	T	T	T	T	Т	Г	П	П	П	١	١	١	١	١	١	V	١	١	١	П	П	7	T	7	Ť	Ť	Ť	T	٦
SPECIE catinus	П	Г	Г	Г	Г	Г	Г	Г	П	П	2	1	T	2	1	2	1	2	T	1	Т	Т	Т	Γ	Г		П	П	П	١	١	١	١	١	١	V	١	١	١	П	П	T	T	T	T	Т	T	Т	٦
GENERE Phialocephala	П	Г	Г	Г	Г	Г	Г	Г	П	П	П	Т	T	T	Т	T	Т	T	Т	T	Т	Т	Т	Γ	Г	Г	П	П	П	١	١	١	١	١	١	V	١	١	١	П	П	٦	T	T	T	Т	Т	Т	٦
SPECIE fortinii	89	75	73	68	73	48	22	56	58	49	2	5	7	1	1	1	4	1	T	T	T	T	Γ	Γ						١	١	١	١	١	١	١	١	١	١	П			T	1	T		T	I]
GENERE Cenococcum			Γ	Γ	Γ	Γ	Г					П	Т	Т	T	T	Τ	Τ	Τ	Τ	Τ	Τ	Т	Γ	Г					١	١	١	١	١	١	١Ī	١	١	١	П	\Box		Т	Т	Τ	Τ	Τ	Τ	
SPECIE geophilum	1	3	1	Γ	Γ	2			1		1		6	I	2	J	3	1	1	I	I	Γ	Γ	Γ						١	١	١	١	١	١	١	١	١	١				J	J	J		I	I	
DIVISIONE Basidiomycota				Γ	Γ													J	I	I	I	I														J									J		J		
GENERE Xerocomus											5		_	3	1	J		1	2	1	I	I								١	١			١	١	١	١	١	١				I	I	I		I	I	
GENERE Baletus				Γ	Ĺ	Ĺ					4	2	J	3	J	1	1	I	1	I	I	I	Γ	Ĺ						١	١	١	١	١	١	١	١	١	١				I	I	I		I	I	
GENERE Hebeloma		2	-	Ĺ	3	-	25	-	6		1	_	8	I	-	4	4	4	I	I	I	I		Ĺ						١	١	١	١	١	١	١	١	١	١				I	I	I		I	I	
SPECIE mesophaeum	4	5	7	2	1	3	2	2	4	5		2	3	5	4	1	1	2	1	1	I	Ĺ		Ĺ	Ĺ	Ĺ				١	١	١	١	١	١	١	١	١	١		\prod							\int	
GENERE Paxillus	Ц	L	L	L	L	L	L	L	Ц	Ц	Ц	\perp	\perp			_			1	1	1		\perp	L	L	L	Ц	Ц	Ц	١	١	١	١	١	١	١	١	١	١	Ц	Ц						1	\perp	
SPECIE involutus		L		L	L			L	Ц	Ц	54	68	_	_	68	54	57 5	-	-	-									Ш	١	١	١	١	١	١	١	١	١	١	Ш	Ц							\perp	
GENERE Laccaria	Ц	L	L	L	L	L	L	L	Ц	Ц	1			2		4			2	3				L	L	L	Ш	Ц	Ш	١	١	١	١	١	١	١	١	١	١	Ш	Ц							\prod	
GENERE Tomentella	Ш	L	L	L	L	L	L	L	Ц	Ц														L			Ш	Ш	Ш	١	١	١	١	١	١	١	١	١	١	Ш	Ц								
SPECIE stuposa	4	5	2	2	2	4	5	1	2	3	1	4	5	2	2	3	2	5	1	1				L		L	Ш	Ш	Ш	١	١	١	١	١	١	V	١	١	١	Ш	Ц		\perp						
GENERE Peziza	Ц	L	L	L	L	L			Ц	Ц										1				L	L	Ĺ	Ш		Ц	١	١	١	١	١	١	١	١	١	١	Ц	Ц							\int	
SPECIE bodia	П				П		1		П	П	2	1	- [1	1		1	1	1	1	1	1			П	П	П	١	l١	I۱l	١l	١I	١I	١I	١I	١l	١	П	ıΙ	-1	П		- 1	- 1		-1	-1

Misure non parametriche di diversità (INDICI DI DIVERSITA'):

MOLLUSCHI	PPPU 14	PPM 14	PI 2014	PPM 17	PNI 17
RICHNESS (S)	2	3	2	4	1
N° taxa dominanti	2	2	2	3	1
Varianza (σ²)	23,388	5,184	0,039	1,184	0,020
Dev. Standard (σ)	4,836	2,277	0,198	1,088	0,141
Coeff. Variazione (CV)	2,198	3,795	4,949	2,720	7,071
Poisson	520,909	423,333	48,000	145,000	49,000
Shannon-Wiener (H')	0,261	0,389	0,693	0,826	0,000
Evenness (J')	0,376	0,354	1,000	0,596	
Simpson (D)	0,865	0,816	0,500	0,585	1,000
Brillouin (HB)	0,243	0,314	0,347	0,652	0,000

ANELLIDI	PPPU 14	PPM 14	PI 14	PPM 17	PNI 17
RICHNESS (S)	2	1	1	0	2
N° taxa dominanti	2	1	1	0	2
Varianza (σ²)	0,120	0,064	0,064	0,000	0,213
Dev. Standard (σ)	0,346	0,254	0,254	0,000	0,461
Coeff. Variazione (CV)	2,593	3,806	3,806	0,000	2,767
Poisson	26,000	28,000	28,000	0,000	37,000
Shannon-Wiener (H')	0,693	0,000	0,000	0,000	0,673
Evenness (J')	1,000				0,971
Simpson (D)	0,500	1,000	1,000	0,000	0,520
Brillouin (HB)	0,448	0,000	0,000		0,461

ARTROPODI	PPPU 14	PPM 14	PI 14	PPM 17	PNI 17
RICHNESS (S)	20	17	28	32	34
N° taxa dominanti	4	3	5	6	5
Varianza (σ²)	36,153	11,834	29,365	21,416	24,357
Dev. Standard (σ)	6,013	3,440	5,419	4,628	4,935
Coeff. Variazione (CV)	4,594	4,810	5,056	3,265	2,933
Poisson	12679,927	7594,465	12576,412	6935,178	6644,243
Shannon-Wiener (H')	1,952	2,001	0,488	2,651	2,690
Evenness (J')	0,652	0,706	0,146	0,765	0,763
Simpson (D)	0,228	0,221	0,221	0,109	0,117
Brillouin (HB)	1,892	1,909	2,086	2,560	2,605

CORDATI	PPPU 14	PPM 14	PI 14	PPM 17	PNI 17
RICHNESS (S)	2	0	2	2	1
N° taxa dominanti	2	0	2	2	1
Varianza (σ²)	0,033	0,000	0,033	0,048	0,017
Dev. Standard (σ)	0,181	0,000	0,181	0,220	0,129
Coeff. Variazione (CV)	5,431		5,431	4,396	7,746
Poisson	58,000		58,000	57,000	59,000
Shannon-Wiener (H')	0,693	0,000	0,693	0,637	0,000
Evenness (J')	1,000		1,000	0,918	
Simpson (D)	0,500	0,000	0,500	0,556	1,000
Brillouin (HB)	0,347		0,347	0,366	0,000

ASCOMICETI	PPPU 14	PPM 14	PI 14	PPM 17	PNI 17
RICHNESS (S)	2	4	0		0
N° taxa dominanti	1	4	0		0
Varianza (σ²)	793,692	3,946	0,000		0,000
Dev. Standard (σ)	28,173	1,986	0,000		0,000
Coeff. Variazione (CV)	1,821	1,019	0,000		0,000
Poisson	2000,257	78,923	0,000		0,000
Shannon-Wiener (H')	0,069	1,291	0,000		0,000
Evenness (J')	0,100	0,931			
Simpson (D)	0,974	0,301	0,000		0,000
Brillouin (HB)	0,066	1,209			

BASIDIOMICETI	PPPU 14	PPM 14	PI 14	PPM 17	PNI 17
RICHNESS (S)	3	8	0		0
N° taxa dominanti	3	1	0		0
Varianza (σ²)	10,221	395,935	0,000		0,000
Dev. Standard (σ)	3,197	19,898	0,000		0,000
Coeff. Variazione (CV)	2,532	2,220			0,000
Poisson	639,594	3489,974			0,000
Shannon-Wiener (H')	1,096	0,714	0,000		0,000
Evenness (J')	0,997	0,343			
Simpson (D)	0,335	0,721	0,000		0,000
Brillouin (HB)	1,048	0,692			

Livelli di similarità tra siti in relazione ai phyla (INDICE DI SIMILARITA' DI BRAY CURTIS)

MOLLUSCHI				
	PPPU 14	PPM 14	PI 14	PPM 17
PPM 14	40,0%			
PI 14	3,6%	12,5%		
PPM 17	24,6%	72,0%	18,2%	
PNI 17	0,0%	0,0%	0,0%	0,0%

ARTROPODI				
	PPPU 14	PPM 14	PI 14	PPM 17
PPM 14	54,8%			
PI 14	46,4%	40,9%		
PPM 17	42,0%	57,1%	37,6%	
PNI 17	31,3%	33,6%	45,0%	64,5%

ANELLIDI					
		PPPU 14	PPM 14	PI 14	PPM 17
	PPM 14	66,7%			
	PI 14	66,7%	0,0%		
	PPM 17	0,0%	0,0%	0,0%	
	PNI 17	44,5%	0,0%	57,2%	0,0%

CORDATI					
		PPPU 14	PPM 14	PI 14	PPM 17
	PPM 14	0,0%			
	PI 14	50,0%	0,0%		
	PPM 17	0,0%	0,0%	0,0%	
	PNI 17	0,0%	0,0%	0,0%	0,0%

ASCOMICETI			
	PPPU 14	PPM 14	PI 14
PPM 14	7,8%		
PI 14	0,0%	0,0%	
PNI 17	0,0%	0,0%	100,0%

BASIDIOMICETI			
	PPPU 14	PPM 14	PI 14
PPM 14	16,4%		
PI 14	0,0%	0,0%	
PNI 17	0,0%	0,0%	100,0%

Livelli di similarità in relazione all'intero campione osservato (INDICE DI SIMILARITA' DI BRAY CURTIS)

	PPPU 14	PPM 14	PI 14	PPM 17
PPM 14	52,8%			
PI 14	42,6%	39,5%		
PPM 17	40,1%	57,5%	37,0%	
PNI 17	29,0%	32,4%	44,9%	63,2%

Considerazioni

Sono stati osservati complessivamente 72 taxa.

I valori di Richness maggiori si riferiscono al **Phylum artropodi,** con un valore massimo a Gazzo 2017 (PNI 2017), pari a 34. Tale valore è aumentato rispetto alla situazione di Pre-Impianto (28).

Tutti i Phyla analizzati mostrano una distribuzione di popolazione di tipo aggregato, con un indice di Poisson >>1, a indicare distribuzioni di tipo binomiale negativo (maggiore è l'indice, maggiore è il grado di aggregazione).

Il più alto grado di diversità tra taxa si riferisce agli artropodi (Indice di Shannon-Wiener, H') a Gazzo 2017, incrementato rispetto alla condizione del 2014 e sempre maggiore rispetto agli altri siti.

L'indice di equipartizione (Evenness, J') numerica dei taxa calcolato nel nuovo impianto di Gazzo Veronese nel 2017 si allinea ai valori rilevati negli altri impianti.

Per quanto riguarda l'indice di Bray Curtis è da notare che, in rela-

zione agli artropodi, la popolazione campionata a Gazzo nel 2017 è diminuito rispetto al 2014 ed è simile per il 64,5% al pioppeto policlico misto di S. Matteo nel 2017.

La popolazione complessiva campionata a Gazzo nel 2017 ha un grado di similarità pari al 63,2% rispetto alla piantagione policiclica mista di S. Matteo delle Chiaviche nello stesso anno. Se confrontato con lo stesso sito nello stesso anno, essa mostra un incremento di circa il 20% rispetto alla situazione di pre-impianto del 2014. Questo dato risente, probabilmente, della preponderanza di taxa appartenenti al Phylum artropodi.

La similarità complessiva delle popolazioni in Gazzo 2017 (19,1%) non è molto diversa dalla situazione di pre-impianto del 2014 (20,6%). Questo dato è influenzato, probabilmente, della attuale assenza di simbionti fungini, verosimilmente a causa del breve lasso di tempo intercorso dall'impianto e, forse, delle lavorazioni al suolo che nel triennio sono state eseguite. È verosimile che tali associazioni possano comparire nel futuro.

BIBLIOGRAFIA

FISHER R. A., CORBET A. S., WILLIAMS C. B., 1943 - The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12: 42-58.

 \mbox{Hoel} P. G., 1943 - $\mbox{On Indices of Dispersion.}$ Annals of Mathematical Statistics 14 (2): 155-162.

Magurran A. E., 2004 - **Measuring biological diversity.** Blackwell Publishing: Oxford, UK., 256 p.

REPORT SULLE SPECIE ORNITICHE

prima della realizzazione delle piantagioni

di Guido Tellini Florenzano, Tommaso Campedelli, Guglielmo Londi e Simonetta Cutini Nell'ambito del progetto Life InBiowood è stata prevista una specifica azione di monitoraggio degli effetti degli interventi che utilizza gli uccelli come indicatori ambientali. Gli uccelli, oltre ad essere una componente non secondaria degli ambienti forestali, e dei sistemi ambientali mediterranei in generale (Keast 1990, Blondel e Aronson 1999), rispondono in maniera sensibile alle modificazioni ambientali, anche a scale spaziali diverse, tanto da essere considerati degli ottimi indicatori delle caratteristiche ambientali di un territorio (Diamond e Filion 1987, Furness e Greenwood 1993, Hilty e Merenlender 2000, Uliczka e Angelstam 2000). L'elevata sensibilità e la grande valenza degli uccelli come indicatori ambientali li rende quindi particolarmente idonei per attività di monitoraggio di piani e progetti (Gregory et al. 2003, 2005), anche in ambito forestale (Furness e Greenwood 1993, Uliczka e Angelstam 2000).

Nell'ambito dello studio ornitologico sono stati inoltre previsti alcuni rilievi finalizzati a valutare, sempre utilizzando gli uccelli come indicatori, quale può essere il valore naturalistico degli impianti policiclici una volta arrivati a maturità, quindi ben oltre il termine del progetto Life. Come meglio descritto nel paragrafo "Materiali e metodi", abbiamo quindi effettuato alcuni rilievi sia in pioppeti tradizionali maturi sia in impianti multispecifici maturi, formazioni che risultano abbastanza simili, in quanto a struttura e composizione, agli impianti policiclici. Le eventuali differenze che scaturiranno dal confronto di questi dati potranno fornire interessanti elementi per valutare il valore naturalistico che gli impianti policiclici potranno raggiungere una volta arrivati a maturità.

Materiali e metodi

Piano di campionamento

Il piano di campionamento è stato definito, per quanto riguarda le aree interessante dagli interventi, in base alla localizzazione degli interventi stessi (aree campione); i rilievi sono stati effettuati anche in aree di confronto, simili da un punto di vista ambientale e vegetazionale ma dove non è prevista alcuna azione. L'individuazione di aree di confronto rientra nella metodologia di monitoraggio BACI (DE Lucas et al. 2005), ormai universalmente accettata come la più efficiente per lo studio di impatti generati da opere e progetti, questa prevede appunto l'utilizzo di un "testimone" per verificare e, in un certo senso, validare, eventuali cambiamenti registrati a seguito di interventi. Esiste infatti la possibilità che alcuni cambiamenti, anche evidenti, siano il risultato di fenomeni a più vasta scala che niente hanno a che vedere con gli interventi realizzati; in questo caso gli stessi cambiamenti si registrerebbero anche nell'area di confronto. Viceversa, qualora

solo i popolamenti dell'area campione mostrassero cambiamenti significativi, sarebbe plausibile indicare nella realizzazione degli interventi la possibile causa di queste modificazioni.

Per quanto riguarda invece la parte relativa al confronto tra pioppete tradizionali e impianti policiclici, le aree di studio sono state individuate sulla base delle informazioni raccolte durante specifici sopralluoghi. All'interno di queste aree sono stati individuati i punti di rilievo

Raccolta dei dati ornitici

Monitoraggio degli effetti del progetto

La metodologia di censimento utilizzata è quello del transetto lineare (Bibby et al. 2001), che consiste nel percorrere a velocità costante un tragitto, appunto il transetto, annotando su di una apposita scheda da campo (Appendice 1) tutte le specie osservate o udite. I transetti hanno interessato un totale di 27,8 km, 19,4 dei quali hanno riguardato le aree dove erano previsti gli interventi del progetto Inbiowood, mentre 8,4 km hanno riguardato le aree di confronto. Entrambe le situazioni sono state suddivise in plot elementari di 200 metri di lunghezza, localizzati sul campo utilizzando un GPS, ottenendo pertanto 97 plot elementari nelle aree campione, e 42 plot elementari nelle aree di confronto. Per ciascuna osservazione, oltre alla specie, è stata registrato il numero di individui, l'attività (canto, osservazione, richiamo....), la distanza a cui l'uccello, nel momento dell'osservazione, si trovava dal transetto e il lato del transetto, destro o sinistro, in cui è avvenuta l'osservazione. La distanza è stata misurata mediante un telemetro. La raccolta di queste informazioni aggiuntive permetterà, in sede di analisi dei dati, di valutare la densità delle diverse specie mediante l'utilizzo del software Distance (Distance sampling; Thomas et al. 2010).

Questo tipo di analisi permette, partendo dalla probabilità che l'operatore ha di contattare una determinata specie, probabilità che è funzione della distanza dall'operatore stesso, di calcolare una stima della densità, e quindi della popolazione, delle diverse specie presenti, potenzialmente anche in relazione ai diversi tipi di ambienti presenti.

Inoltre, il confronto tra i dati raccolti nelle aree campione e in quelle di confronto permetterà di evidenziare eventuali effetti significativi legati agli interventi realizzati nell'ambito del progetto.

Confronto pioppeti tradizionali - impianti policiclici

La metodologia utilizzata per i rilievi ha previsto la realizzazione, in ciascuna stazione scelta, di registrazioni audio digitali utilizzando un microfono stereo panoramico, posizionato su cavalletto per macchina fotografica, ciascuna per un tempo di 15 minuti. L'utilizzo di registrazioni audio per l'acquisizione di informazioni sulla presenza delle specie ornitiche, già ampiamente testata a livello internazionale (Acevedo e Villanueva-Rivera 2006, Celis-Murillo et al. 2009), è stata applicata con buoni risultati anche in ambienti forestali della Toscana (Tellini Florenzano et al. 2006, 2009). Una volta analizzate le registrazioni, sarà possibile definire per ciascuna stazione una lista di specie e una serie di parametri ornitici descrittivi della struttura e della composizione dei popolamenti nidificanti (ricchezza, abbondanza totale, ricchezza per guild ecc.). L'analisi dei potenziali cambiamenti di questi parametri in funzione degli interventi previsti dal progetto servirà a definire la sostenibilità o meno delle azioni adottate. Questa metodologia, soprattutto per progetti di questo tipo, comporta, se confrontata con quelle che prevedono la presenza di ornitologi professionisti impegnati nei rilievi sul campo, alcuni vantaggi:

- permette di costituire un archivio delle registrazioni che possono essere riascoltate in ogni momento;
- i dati possono essere certificabili da terzi.

Inoltre, nel caso specifico di questo studio, le registrazioni consentono non solo di valutare la presenza di una specie, ma anche il livello di attività di queste in ciascun sito, contando il numero di segni di presenza (frasi di canto, richiami) per un unità di tempo. Questa operazione, possibile con l'ascolto delle registrazioni digitali, con anche il supporto video offerto da specifici programmi di analisi del suono, potrà consentire di valutare una eventuale differenza nei livelli di frequentazione a piccola scala proprio nelle aree oggetto di intervento.

Contemporaneamente alla registrazioni sono stati raccolti anche altri dati, direttamente ascoltando e osservando le specie presenti, con l'obiettivo sia di collezionare osservazioni utili alla definizione dell'avifauna dell'area, sia di avere elementi per alcune valutazioni preliminari, utili anche per indirizzare eventualmente le analisi. In ciascuna stazione sono stati inoltre raccolti alcuni dati identificativi della stazione stessa e informazioni relative alle condizioni meteorologiche (vedi scheda da campo in Appendice 2).

Le registrazioni sono state effettuate nelle prime ore dopo l'alba in giornate caratterizzate da condizioni meteo favorevoli e comunque in assenza di pioggia o vento forte.

Risultati

Monitoraggio degli effetti del progetto

Nelle aree interessate dal progetto Inbiowood abbiamo eseguito censimenti per transetto lineare in un totale di 27,8 km, ripartiti tra aree campione (19,2 km) e aree di confronto (8,4 km). I transetti sono stati percorsi da un operatore, per due volte nel corso della stagione riproduttiva 2014, la prima il 17 ed il 18 maggio, con due operatori, la seconda dall'8 all'11 giugno, con un solo operatore. Tutti i rilievi sono stati svolti nelle prime ore della giornata (dall'alba fino alle 10.00), in giornate con assenza di precipitazioni e vento debole.

In totale sono state contattate 71 specie (Tabella 1), tra le quali prevalgono, almeno come numero di individui e di plot elementari occupati, specie palustri (cannaiola verdognola, cannaiola comune, cannareccione), specie ubiquitarie e sinantropiche (cornacchia grigia, gazza, passera d'Italia e passera mattugia, storno). Paiono invece relativamente scarse sia le specie legate strettamente agli agroecosistemi (allodola, cappellaccia, ortolano, strillozzo), con l'eccezione della cutrettola, sia le specie degli arbusteti e delle siepi (usignolo, sterpazzola).

La situazione pare pertanto ideale per evidenziare lo sperabile effetto del progetto Life prima di tutto su questa ultima componente, ma anche sulle specie degli ambienti agricoli, sulle quali è sperabile un effetto positivo della diversificazione ambientale generata dagli interventi.

In ogni caso la struttura dei dati a disposizione, con ben 34 specie la cui frequenza (n. di plot occupati) è maggiore di 10, ci permette di affermare che sarà possibile, con un campione di questa numerosità, avere dati sufficienti per verificare l'effetto degli interventi del progetto.

specie	aree cam n plot elementari	pione individui	aree cont n plot elementari	ronto individui	totale n plot elementari	individui
1 Tarabusino	6	6		0	6	
2 Nitticora	4	4	4	4	8	
3 Airone guardabuoi	4	6	4	5	8	
4 Garzetta	22	31		10	31	
5 Airone bianco maggiore	2	4		1	3	
6 Airone cenerino	33	38	_	27	50	
7 Airone rosso	16	23		2	18	
8 Oca egiziana	1	1		0	1	
9 Germano reale	19	44		16	27	
	0	0				
10 Falco pecchiaiolo		-		1	1	
11 Falco di palude	4	4	-	0	4	
12 Poiana	1	1		0	1	
13 Gheppio	10	12		4	14	
14 Falco cuculo	2	2		4	4	
15 Lodolaio	3	3		0	3	
16 Quaglia	2	2		1	3	
17 Fagiano comune	17	18	26	30	43	
18 Porciglione	1	1	. 0	0	1	
19 Gallinella d'acqua	4	4	5	6	9	
20 Cavaliere d'Italia	3	6	0	0	3	
21 Corriere piccolo	1	1		ő	1	
22 Pavoncella	22	37		11	30	
23 Piro piro culbianco	6	6	-	0	6	
-		-	_	_		
24 Piro piro boschereccio	1	1		0	1	
25 Gabbiano comune	1	2		0	1	
26 Gabbiano reale	8	67		687	19	
27 Colombaccio	32	44		32	54	
28 Tortora dal collare	37	60		15	48	
29 Tortora selvatica	7	9		17	21	
30 Cuculo	31	37	31	38	62	
31 Civetta	3	3	1	1	4	
32 Gufo comune	1	1	. 0	0	1	
33 Rondone comune	5	14	6	15	11	
34 Martin pescatore	16	17	12	14	28	
35 Gruccione	1	4		2	2	
36 Ghiandaia marina	0	Ö		1	1	
	1	1		ō	1	
37 Upupa 20 Disabia - parla						
38 Picchio verde	7	7	-	0	7	
39 Picchio rosso maggiore	4	4	_	1	5	
40 Cappellaccia	25	26		13	36	
41 Allodola	35	35		45	69	
42 Rondine	25	42	8	16	33	
43 Balestruccio	6	9	0	0	6	
44 Cutrettola	77	97	32	34	109	
45 Ballerina gialla	1	1	0	0	1	
46 Usignolo	48	55	_	78	95	
47 Merlo	25	31		13	34	
48 Usignolo di fiume	14	15		26	35	
49 Cannaiola verdognola	65	88		28		
50 Cannaiola comune	22	25		17		
51 Cannareccione	29	32		36		
52 Canapino comune	0	0		1		
53 Sterpazzola	17	18		27	42	
54 Capinera	39	45	35	44	74	
55 Lui verde	1	1	. 0	0	1	
56 Codibugnolo	1	2		0		
57 Cinciarella	1	1		ō		
58 Cinciallegra	19	26		17	30	
59 Rigogolo	7	7		12		
60 Averla piccola	3	3		0		
				_		
61 Ghiandaia	7	7	-	0		
62 Gazza	45	79		53		
63 Cornacchia grigia	58	94		40		
64 Stomo	47	242		44		
65 Passera d'Italia	32	75	10	22	42	
66 Passera mattugia	60	137		22		
67 Verzellino	0	0		1	1	
68 Verdone	3	3		ō		
	11	11		1	12	
69 Cardellino	11			11		
70 Ortolano	1	1	. 7			

Tabella 1 - Risultati dei rilevamenti del 2014 sulle aree di intervento del progetto Life Inbiowood. Sono riportati separatamente tra aree campione e aree di confronto i dati relativi al numero di plot elementari di presenza e il numero di individui rilevato, nelle due repliche di censimento svolte nel 2014.

Confronto pioppete tradizionali - impianti policiclici

Complessivamente sono 33 i punti di ascolto realizzati, 16 all'interno di impianti multispecifici e 17 in pioppeti tradizionali. Le registrazioni devono essere ancora analizzate, tuttavia nella Tabella 2 vengono presentati i dati integrativi raccolti durante le stazioni dall'operatore.

In questo caso è possibile svolgere solo considerazioni estrema-

mente preliminari, non disponendo dei dati analizzati delle registrazioni. I dati raccolti dall'operatore sembrano definire, sia pure in un contesto estremamente povero dell'avifauna dell'area, una certa maggiore presenza per alcune specie chiave legate al bosco e agli arbusteti (usignolo, merlo, capinera, codibugnolo), soprattutto nell'ambito spaziale dell'intorno immediato del punto, come prima conferma della maggiore frequentazione ornitica degli impianti policiclici rispetto ai pioppeti tradizionali.

		campione		confronto	
specie	<50 m	>50 m	<50 m	>50 m	
1 Garzetta		1	2		1
2 Airone cenerino			1		
3 Germano reale			1		1
4 Fagiano comune		2	6	3	7
5 Gallinella d'acqua			3		2
6 Colombaccio		3	1		1
7 Tortora dal collare			3		
8 Tortora selvatica		1	2		
9 Cuculo					2
10 Martin pescatore					1
11 Picchio rosso maggiore		10		5	3
12 Usignolo		6	4	1	3
13 Merlo		3	1	1	3
14 Capinera		6	2	1	5
15 Luì verde		1		1	
16 Codibugnolo		3		1	
17 Cinciarella		1			3
18 Cinciallegra		4		7	2
19 Rigogolo		4		4	2
20 Gazza		1	1		
21 Cornacchia grigia		7	5	9	3
22 Storno		2	1	7	1
23 Fringuello			1	6	2

Tabella 2 - Dati integrativi raccolti dall'osservatore nelle 33 aree di censimento negli impianti policiclici situati in provincia di Mantova. Oltre alla suddivisione tra aree campione (n=17) e confronto (n=16), riportiamo una suddivisione tra contatti avvenuti con uccelli in prossimità del punto (entro 50 m) e uccelli più distanti dal punto stesso (oltre 50 m).

BIBLIOGRAFIA

Acevedo M.A., Villanueva-Rivera L.J. 2006 - From the field: using automated digital recording systems as effective tools for the monitoring of birds and amphibians. Wildlife Society Bulletin, 34 (1): 211-214.

BIBBY C.J., BURGESS N.D., HILL D.A. 1992 - Bird Census Techniques. London: Academic Press.

BLONDEL J., ARONSON J., 1999 - Biology and Wildlife of the Mediterranean Region. Oxford University Press, Oxford.

Celis-Murillo A., Deppe J.L. & Allen M.F. 2009 - Using soundscape recordings to estimate bird species abundance, richness, and composition. Journal of Field Ornithology 80: 64-78.

De Lucas M., Janss G.F.E., Ferrer M., 2005 - A bird and small mammal BACI and IG design studies in a wind farm in Malpica (Spain). Biodiversity and Conservation 14: 3289-3303.

DIAMOND A.W., FILION F. (eds.), 1987 - The Value of Birds. International Council for Bird Preservation. Technical Publication No. 6. Cambridge.

Furness R.W., Greenwood J.J.D. (eds.), 1993 - Birds as Monitors of Environmental Change. Chapman e Hall. London.

GREGORY R.D., NOBLE D., FIELD R., MARCHANT J., RAVEN M., GIBBONS D.W., 2003 - Using birds as indicators of biodiversity. Ornis Hungarica, 12-13: 11-24.

GREGORY R.D., VAN STRIEN A., VORISEK P., MEYLING A.W.G., NOBLE D.G., FOPPEN R.P.B.,

GIBBONS D.W., 2005 - Developing indicators for European birds. Philosophical transactions of the Royal Society 360: 269-288

HILTY J. A., MERENLENDER A., 2000 - Faunal indicator taxa selection for monitoring ecosystem health. Biological Conservation 92: 185-197.

Keast A. (ed.) 1990 - Biogeography and ecology of forest bird communities. SPB Academic Publishing bv, The Hague, The Netherlands.

TELLINI FLORENZANO G., GUIDI C., DI STEFANO V., MINI L., LONDI G., CAMPEDELLI T., 2006

- Effetto dell'ambiente a scala di habitat e di paesaggio su struttura e composizione della comunità ornitica delle abetine casentinesi (Appennino Settentrionale). Rivista Italiana di Ornitologia 76 (1): 151-166.

TELLINI FLORENZANO G., LONDI G., MINI L., TIBERI R., CAMPEDELLI T., 2009 - Frammentazione delle Foreste mediterranee e biodiversità: due casi di studio in Italia centrale. Atti del Terzo Congresso Nazionale di Selvicoltura. Taormina (ME), 16-19 ottobre 2008. In: Ciancio O. (ed.). Atti del Terzo Congresso Nazionale di Selvicoltura. Taormina (ME), 16-19 ottobre 2008. Volume I-Accademia Italiana di Scienze Forestali, pp. 295-299.

THOMAS L., BUCKLAND S.T., REXSTAD E.A., LAAKE J.L., STRINDBERG S., HEDLEY S.L., BISHOP $J.R.B., \mbox{\it Marques}$ T.A., 2010 - Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47:5-14.

ULICZKA H., ANGELSTAM P., 2000 - Assessing conservation values of forest stands based on specialized lichens and birds. Biological Conservation 95:343-351

Appendice 1

Scheda per la raccolta dei dati utilizzata nei transetti lineari

cielo ora vento cielo ora vento ora vento ora vento ora vento ora cielo ora vento ora cielo ora vento ora	rilevatore						data					
	cielo		ora		vento		cielo		ora		vento	
Note:	GPS	specie	ind	att	dx/sx	dist	GPS	specie	ind	att	dx/sx	dis
Note:									-			
Note:												
Note:												
Note:												
Note:												
Note:			_									
Note:			-							-		
Note:						-			-			
Note:			-									
Note:												
Note:												
Note:												
Note:												
Note:												
Vote: Note:												
Note:												
Note: Note:												
Note: Note:												
Note: Note:												
Note: Note:												
Note:			-						-			
Note:												
Note:	-					-						
Note:												
Note:												
Notec Note:												
Note: Note:												
Note:												
Note:												
Note:												
Note: Note:	-											
Note: Note:						-						
Note: Note:										-		
Note: Note:						-						
Note: Note:												
Note: Note:												
	Noter						Note:					
	- 13000											

Appendice 2

Scheda per la raccolta dei dati ambientali e stazionali nei punti di ascolto

	Li	fe InBiowood								
	RILEVA	IMENTO AVIFAUNA								
	sto	azioni di ascolto	D.R.E. JM.							
Area di indagine:										
_										
Rilevatore:										
Codice stazione:										
Gps										
Data://		Ora:								
Codice registrazione: _										
_										
Condizioni meteo										
Cielo		Vento								
_ sereno		🗆 0 - il fumo si alza vertica								
□ nuvole per 1/4		□ 1 - la direzione del vento si agitano nemmeno le foglie	è indicata solo dal fumo; non :							
□ nuvole per 1/2		□ 2 - le foglie fremono; si s	sente la brezza sul viso							
□ nuvole per 3/4		□ 3 - foglie e rametti sono	costantemente agitati							
□ coperto		□ 4 - il vento solleva la polv	ere							
□ nebbia		🗆 5 – gli arbusti cominciano	a oscillare							
		Note								

REPORT SULLA VARIAZIONE DI SPECIE ORNITICHE SIGNIFICATIVE

con e senza piantagioni policicliche permanenti

> di Guido Tellini Florenzano, Tommaso Campedelli, Guglielmo Londi e Simonetta Cutini

Nell'ambito del progetto Life InBiowood è stata prevista una specifica azione di monitoraggio degli effetti degli interventi che utilizza gli uccelli come indicatori ambientali. Gli uccelli, oltre ad essere una componente non secondaria degli ambienti forestali, e dei sistemi ambientali mediterranei in generale (Keast 1990, Blondel e Aronson 1999), rispondono in maniera sensibile alle modificazioni ambientali, anche a scale spaziali diverse, tanto da essere considerati degli ottimi indicatori delle caratteristiche ambientali di un territorio (Diamond e Filion 1987, Furness e Greenwood 1993, Hilty e Merenlender 2000, Uliczka e Angelstam 2000). L'elevata sensibilità e la grande valenza degli uccelli come indicatori ambientali li rende quindi particolarmente idonei per attività di monitoraggio di piani e progetti (Gregory et al. 2003, 2005), anche in ambito forestale (Furness e Greenwood 1993, Uliczka e Angelstam 2000).

Nell'ambito dello studio ornitologico sono stati inoltre previsti alcuni rilievi finalizzati a valutare, sempre utilizzando gli uccelli come indicatori, quale può essere il valore naturalistico degli impianti policiclici una volta arrivati a maturità, quindi ben oltre il termine del progetto Life. Come meglio descritto nel paragrafo "Materiali e metodi", abbiamo quindi effettuato alcuni rilievi sia in pioppete tradizionali mature sia in impianti multispecifici maturi, formazioni che risultano abbastanza simili, quanto a struttura e composizione, agli impianti policiclici. Le eventuali differenze che scaturiranno dal confronto di questi dati potranno fornire interessanti elementi per valutare il valore naturalistico che gli impianti policiclici potranno raggiungere una volta arrivati a maturità.

Aree di studio

Monitoraggio degli effetti del progetto

I rilievi hanno interessato un ampio settore della pianura veronese, buona parte della quale è interessata dal progetto Life Inbiowood. I rilievi sono stati svolti lungo transetti lineari, la cui distribuzione spaziale è riportata nelle Figure 1 e 2. Parte dei transetti riguarda aree interessate dal progetto Inbiowood, parte è stata utilizzata come area testimone.

Confronto pioppeti tradizionali - impianti policiclici

Lo studio è stato realizzato in località San Matteo delle Chiaviche (Viadana, MN) in impianti policiclici a termine e pioppeti intensivi coltivati in maniera tradizionale, tutti posti in un area di circa 2 km di raggio, alla confluenza dell'Oglio con il Po. La densità d'impianto negli impianti policiclici a termine, suddivisi in due lotti, era di 5x2,5 m. Un lotto (circa 25 ha), in golena aperta, storicamente coltivato a pioppeto, è stato messo a dimora

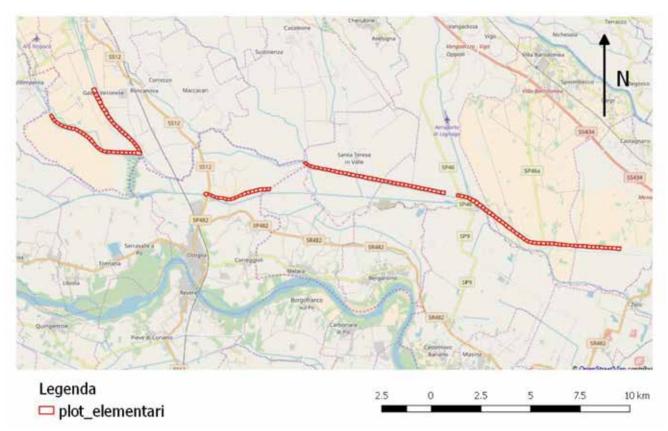


Figura 1 - Localizzazione delle aree interessate dai transetti di monitoraggio, suddivisi in plot elementari di 200 m di lunghezza ciascuno.

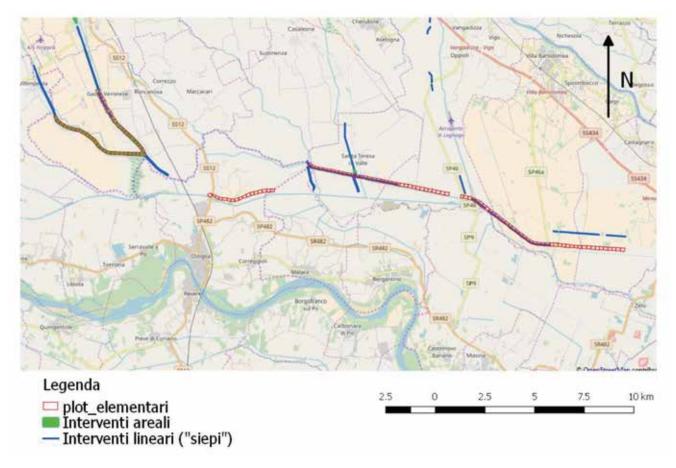


Figura 2 - Localizzazione delle aree interessate dai transetti di monitoraggio, con rappresentazione delle aree di intervento del progetto Inbiowood, e dei plot elementari di monitoraggio ornitico.

nel 2003, utilizzando noci regia e noci ibridi, frassino, ciavardello, farnia e pero come piante principali, quattro cloni di pioppo (Lena, Villafranca, 'I-214' e Neva) come piante a doppio ruolo, ontano nero, nocciolo e sambuco come piante accessorie. Un secondo lotto (circa 24 ha), fuori golena, precedentemente coltivato a seminativo, è stato messo a dimora nel 2004, utilizzando noci regia, tiglio, farnia, pero e ciavardello, con ruolo di piante principali, pioppo di un solo clone (Neva) come pianta a doppio ruolo, ontano nero, nocciolo ed eleagno come accessorie. Le lavorazioni del terreno sono limitate ai primi quattro anni con intensità decrescente, non sono state effettuate concimazioni e irrigazioni ed è stato effettuato un unico trattamento al pioppo, localizzato al tronco nel lotto fuori golena.

Il pioppeto tradizionale (circa 50 ha), in golena aperta, era coltivato interamente con il clone 'I-214' con un sesto di impianto 6,5x6,5 m, con età tra 9 e 12 anni. L'azienda che conduce i terreni si avvale di tecniche di coltivazioni intensive, che comprendono lavorazioni del terreno, concimazioni, irrigazioni, potature e trattamenti antiparassitari.

Materiali e metodi

Piano di campionamento

Il piano di campionamento è stato definito, per quanto riguarda le aree interessate dagli interventi, in base alla localizzazione degli interventi stessi (aree campione); i rilievi sono stati effettuati anche in aree di confronto, simili da un punto di vista ambientale e vegetazionale ma dove non è prevista alcuna azione. L'individuazione di aree di confronto rientra nella metodologia di monitoraggio BACI (DE Lucas et al. 2005), ormai universalmente accettata come la più efficiente per lo studio di impatti generati da opere e progetti, questa prevede appunto l'utilizzo di un "testimone" per verificare e, in un certo senso, validare, eventuali cambiamenti registrati a seguito di interventi. Esiste infatti la possibilità che alcuni cambiamenti, anche evidenti, siano il risultato di fenomeni a più vasta scala che niente hanno a che vedere con gli interventi realizzati; in questo caso gli stessi cambiamenti si registrerebbero anche nell'area di confronto. Viceversa, qualora solo i popolamenti dell'area campione mostrassero cambiamenti significativi, sarebbe plausibile indicare nella realizzazione degli interventi la possibile causa di queste modificazioni.

Per quanto riguarda invece la parte relativa al confronto tra pioppete tradizionali e impianti policiclici, le aree di studio sono state individuate sulla base delle informazioni raccolte durante specifici sopralluoghi. All'interno di queste aree sono stati individuati i punti di rilievo.

Raccolta dei dati ornitici Monitoraggio degli effetti del progetto

La metodologia di censimento utilizzata è quello del transetto lineare (BIBBY et al. 2001), che consiste nel percorrere a velocità costante un tragitto, appunto il transetto, annotando su di una apposita scheda da campo (Appendice 1) tutte le specie osservate o udite. I transetti hanno interessato un totale di 27,8 km, 19,4 dei quali hanno riguardato le aree dove erano previsti, secondo il materiale di progetto consultato, gli interventi del progetto Inbiowood, mentre 8,4 km hanno riguardato le aree di confronto. Entrambe le situazioni sono state suddivise in plot elementari di 200 metri di lunghezza, localizzati sul campo utilizzando un GPS, ottenendo complessivamente 139 plot elementari. Per ciascuna osservazio-

ne, oltre alla specie, è stata registrato il numero di individui, l'attività (canto, osservazione, richiamo....), la distanza a cui l'uccello, nel momento dell'osservazione, si trovava dal transetto e il lato del transetto, destro o sinistro, in cui è avvenuta l'osservazione. La distanza è stata misurata mediante un telemetro. La raccolta di queste informazioni aggiuntive permette di verificare, nei due periodi campionati, se si sono registrate differenze nella distribuzione spaziale degli uccelli, tenendo quindi pertanto conto di cambiamenti eventualmente avvenuti tra i due periodi, cambiamenti che possono derivare da variazioni nella densità degli uccelli.

Il protocollo di raccolta dati ha previsto, nei due anni di indagine (2014 e 2017), di percorrere tutti i transetti ora descritti per due volte all'anno, negli stessi periodi e in condizioni meteorologiche idonee, ossia con vento debole e assenza di precipitazioni. Tutti i rilievi in entrambi gli anni sono stati svolti nelle prime ore della giornata (dall'alba fino alle 10.00).

Il confronto tra i dati raccolti nelle aree campione e in quelle di confronto ha permesso, come sarà possibile vedere dai risultati, di evidenziare gli effetti significativi legati agli interventi realizzati nell'ambito del progetto.

Confronto pioppeti tradizionali - impianti policiclici

La metodologia utilizzata per i rilievi ha previsto la realizzazione, in ciascuna stazione scelta, di registrazioni audio digitali utilizzando un microfono stereo panoramico, posizionato su cavalletto per macchina fotografica, ciascuna per un tempo di 15 minuti. L'utilizzo di registrazioni audio per l'acquisizione di informazioni sulla presenza delle specie ornitiche, già ampiamente testata a livello internazionale (Acevedo e Villanueva-Rivera 2006, Celis-Murillo et al. 2009), è stata applicata con buoni risultati anche in ambienti forestali della Toscana (Tellini Florenzano et al. 2006; 2009).

Una volta analizzate le registrazioni, è possibile definire per ciascuna stazione una lista di specie e una serie di parametri ornitici descrittivi della struttura e della composizione dei popolamenti nidificanti (ricchezza, abbondanza totale, ricchezza per guild ecc.). L'analisi dei potenziali cambiamenti di questi parametri in funzione degli interventi previsti dal progetto servirà a definire la sostenibilità o meno delle azioni adottate.

Questa metodologia, soprattutto per progetti di questo tipo, comporta, se confrontata con quelle che prevedono la presenza di ornitologi professionisti impegnati nei rilievi sul campo, alcuni vantaggi:

- permette di costituire un archivio delle registrazioni che possono essere riascoltate in ogni momento;
- i dati possono essere certificabili da terzi.

Inoltre, nel caso specifico di questo studio, le registrazioni consentono non solo di valutare la presenza di una specie, ma anche il livello di attività di queste in ciascun sito, contando il numero di segni di presenza (frasi di canto, richiami) per unità di tempo. Questa operazione, possibile con l'ascolto delle registrazioni digitali, con anche il supporto video offerto da specifici programmi di analisi del suono, può consentire di valutare una eventuale differenza nei livelli di frequentazione a piccola scala proprio nelle aree oggetto di intervento.

Contemporaneamente alla registrazioni sono stati raccolti anche altri dati, direttamente ascoltando e osservando le specie presenti, con l'obiettivo sia di collezionare osservazioni utili alla definizione dell'avifauna dell'area, sia di avere elementi per alcune valutazioni preliminari, utili anche per indirizzare eventualmente le analisi. In ciascuna stazione sono stati inoltre raccolti alcuni dati identifica-

tivi della stazione stessa e informazioni relative alle condizioni meteorologiche (vedi scheda da campo in Appendice 2).

Le registrazioni sono state effettuate nelle prime ore dopo l'alba in giornate caratterizzate da condizioni meteo favorevoli e comunque in assenza di pioggia o vento forte.

Analisi dei dati Monitoraggio degli effetti del progetto

I dati raccolti sono stati organizzati in un archivio dove, per ogni plot elementare, per ogni replica annuale, e per ogni specie, è riportato il numero di individui contattati. Prima di procedere alle analisi, abbiamo ritenuto opportuno escludere da queste le specie che, a causa della grande estensione del home-range, si possono ritenere presenti in uno specifico plot più per motivi casuali, che per la presenza di particolari situazioni ambientali. Le specie escluse dalla analisi sono riportate in Tabella 1.

Sulle specie rimanenti abbiamo calcolato, per ciascun plot, la ricchezza specifica (numero di specie) e la diversità mediante l'indice di Shannon

Questi due indici sono stati misurati, sempre per ciascun plot, anche per il sottoinsieme delle specie maggiormente legate agli ambienti fluviali, forestali e di siepi ed arbusteti, escludendo cioè le specie maggiormente legate alle tipologie colturali presenti, quali l'allodola e la quaglia.

Questo sottoinsieme si giustifica perché verosimilmente quello maggiormente rispondente a variazioni ambientali nelle aree di golena, e soprattutto perché quello che non è influenzato nel tempo da variazioni nelle scelte colturali, il cui effetto sulle popolazioni

di uccelli può mascherare l'effetto degli interventi del progetto Life Inhiowood

L'obiettivo delle analisi, e del monitoraggio in generale, è quello di verificare eventuali effetti dovuti agli interventi realizzati, ossia all'impianto di policiclici, sul popolamento di uccelli nidificanti, sia in termini di abbondanza delle singole specie, sia di ricchezza specifica e diversità del popolamento complessivo.

Abbiamo quindi confrontato i dati raccolti nelle aree campione, ovvero interessate dagli interventi, e in quelle di confronto, prima e dopo la realizzazione degli interventi stessi. Utilizzando i Modelli Lineari Generalizzati Misti (GLMM, RUSHTON *et al.* 2004, ZUUR *et al.* 2009), abbiamo verificato l'effetto dell'intervento utilizzando come testimone i dati raccolti nelle aree di confronto.

Con la situazione a nostra disposizione si possono individuare due livelli di confronto, corrispondenti il primo ai plot interessati da impianti di tipo areale (n = 39 plot), il secondo da soli interventi di tipo lineare ("siepi", n = 57), mentre i plot di confronto ("testimone") risultano 43. A questi punto sono teoricamente possibili numerose tipologie di analisi, che possono tenere conto delle tre tipologie ora descritte, di combinazioni di queste (es. campione confrontato con il testimone), e si possono considerare separatamente o cumulativamente le due repliche di censimento.

A seguito di analisi di tipo esplorativo effettuate sui dati, abbiamo preso in esame il solo confronto tra plot interessati da interventi areali e testimone, prendendo in esame i parametri ornitici raccolti separatamente tra le due repliche di censimento annuale.

I parametri ornitici utilizzati nelle analisi, ovvero gli indicatori utilizzati per verificare la presenza di eventuali effetti dovuti agli inter-

1 Tuffetto 17 Poiana
2 Tarabusino 18 Gheppio
3 Nitticora 19 Falco cuculo
4 Sgarza ciuffetto 20 Lodolaio
5 Airone guardabuoi 21 Folaga

6 Garzetta 22 Cavaliere d'Italia 7 Airone bianco maggiore 23 Corriere piccolo 8 Airone cenerino 24 Piro piro culbianco 9 Airone rosso 25 Piro piro boschereccio 10 Cigno reale 26 Gabbiano comune 11 Oca selvatica 27 Gabbiano reale 12 Oca egiziana 28 Sterna comune

13 Germano reale 29 Civetta
14 Falco pecchiaiolo 30 Allocco
15 Falco di palude 31 Gufo comune
16 Albanella minore 32 Rondone comune

Tabella 1 - Elenco delle specie escluse dalle analisi perché aventi un home-range ampio, non compatibile con le dimensioni dei plot analizzati.

1 Porciglione	9 Cannareccione	17 Passera d'Italia
2 Gallinella d'acqua	10 Canapino comune	18 Passera mattugia
3 Usignolo	11 Sterpazzola	19 Verzellino
4 Merlo	12 Capinera	20 Verdone
5 Usignolo di fiume	13 Codibugnolo	21 Cardellino
6 Beccamoschino	14 Cinciarella	22 Ortolano
7 Cannaiola verdognola	15 Cinciallegra	23 Strillozzo
8 Cannaiola comune	16 Averla piccola	

Tabella 2 - Elenco delle 23 specie maggiormente legate agli ambienti golenali, forestali e fluviali, per i quali è stata calcolata la ricchezza e l'indice di diversità su specie selezionate.

venti, sono quindi i seguenti:

- ricchezza per plot, misurata per due diverse liste di specie, e anche a livelli diversi di periodicità di rilevamento:
 - **St_repl**, tutte le specie considerate, ossia escludendo quelle di Tabella 1, misurato separatamente tra le due repliche annuali di censimento;
 - St_tot, tutte le specie considerate, ossia escludendo quelle di Tabella 1, misurato congiuntamente tra le due repliche annuali di censimento;
 - Ss_repl, come St_repl, ma considerando solo le specie della Tabella;
 - Ss_tot, come St_tot, ma considerando solo le specie della Tabella;
- indice di diversità (Shannon) a livello di plot, misurato, analogamente alla ricchezza, in quattro modi diversi, Ht_repl, Ht_tot, Hs_repl, Hs_tot;
- abbondanza (numero di individui), sempre a livello di plot, per le specie, tra quelle elencate in Tabella, più frequenti e abbondanti, ossia per quelle che sono risultate presenti in almeno 50 plot.

Il miglior set di variabili è stato scelto in base all'AICc, ovvero il criterio di informazione di Akaike corretto per campioni di ridotte dimensioni (Burnham e Anderson 1998); le variabili non significative sono state escluse dal modello. Le variabili, usate come fattori fissi, sono:

- periodo (ANTE_POST), che assumerà due valori, indicati rispettivamente con "ANTE" per il primo anno di rilievo (2014), e "POST" per il secondo anno (2017); con questa variabile si tiene conto di eventuali differenze annuali non dovute all'intervento;
- l'intervento (INTERVENTO), che assumerà anche questo due valori, "SI" per i punti in cui al momento del rilevo era stato effettuato l'intervento; "NO" per tutti gli altri casi; abbiamo considerato due livelli di intervento, quello areale e quello lineare ("siepi"), in entrambi i casi abbiamo calcolato per ciascun plot

- l'area interessata dagli interventi (per le siepi abbiamo considerato una larghezza convenzionale di 1,6 m);
- l'area (CAMPIONE-CONFRONTO), che serve a evidenziare le eventuali differenze sistematiche tra gli insiemi di plot confrontati.

Dato che i dati non sono indipendenti tra loro, abbiamo considerato anche due variabili cosiddette "random", ossia fattori di annidamento dei dati, in particolare queste sono:

- il plot (PLOT), una variabile che considera l'annidamento dei dati, tra repliche e anni diversi, e che corrisponde all'identificativo di ciascun plot;
- la replica annuale (REPLICA), variabile che considera l'annidamento dei dati tra repliche diverse nel medesimo anno di rilevamento.

I confronti hanno riguardato i seguenti disegni di analisi:

variabile	INTERVENTO	considerando separatamente
ornitica	solo areale	le due repliche
variabile ornitica	INTERVENTO complessivo (areale più siepi)	considerando separatamente le due repliche
variabile	INTERVENTO	considerando congiuntamente
ornitica	solo areale	le due repliche
variabile ornitica	INTERVENTO complessivo (areale più siepi)	considerando congiuntamente le due repliche

Dopo avere provato tutti e quattro i disegni ora descritti, presenteremo solo il primo dell'elenco, perché quello che ha dato i migliori risultati (vedi oltre). Il primo e il terzo disegno sono stati ottenuti considerando solo i plot campione (areale), n=39 e quelli testimone, n=43.

Confronto pioppeti tradizionali - impianti policiclici

Abbiamo censito gli uccelli con un registratore digitale dotato di microfono stereo panoramico (ZOOM modello H2), posizionato a circa 1,20 m di altezza su un cavalletto per macchina fotografica, nei giorni 17 e 18 maggio 2014, tra le 5:45 e le 9:30, in 16 punti all'interno degli impianti policiclici e in 17 punti all'interno del pioppeto, ad una distanza minima l'uno dall'altro di circa 190 m. Per ogni punto abbiamo analizzato 10' di registrazione mediante uno specifico software (Audacity 2.0.5, vedi Figura 3) ricavando, dall'esame delle vocalizzazioni, l'elenco delle specie presenti e, per ciascuna di esse, un "indice di utilizzazione" dato dal numero delle vocalizzazioni.

Abbiamo quindi confrontato i parametri di struttura del popolamento (ricchezza in specie, diversità espressa dall'indice di Shannon), i livelli complessivi di attività e, per quelle con un numero sufficiente di dati (almeno 50 vocalizzazioni complessive), l'attività della singola specie, utilizzando i GLM (modelli lineari generalizzati) per verificare l'ipotesi di una differenza significativa tra impianti policiclici e pioppeti. Verificando le distribuzioni dei residui abbiamo scelto di utilizzare per ricchezza e diversità i GLM nella forma "classica", per le attività delle specie i GLM misti, in particolare i modelli "hurdle", che permettono di trattare variabili dipendenti con un eccesso di valori zero rispetto a qualsiasi distribuzione di errore. Nelle analisi sono state incluse anche la minima distanza da elementi di diversificazione (potenzialmente rilevante in ambienti omogenei come quelli studiati) definiti come qualsiasi superficie superiore a 1.000 m² o, se estesa prevalentemente in lunghezza, larga più di 20 m, non interessata da arboricoltura da legno e dell'orario (dal quale dipende molto l'attività degli uccelli). Tutte le analisi sono state svolte con il pacchetto R (R Core Team 2016).

Risultati

Monitoraggio degli effetti del progetto

Nelle aree interessate dal progetto Inbiowood abbiamo eseguito censimenti per transetto lineare in un totale di 27,8 km, suddivisi in 139 plot elementari di 200 m di lunghezza ciascuno. Prendendo in esame gli effettivi interventi del progetto Inbiowood, i 139 plot sono così suddivisi:

- 39 plot (7,8 km) interessati da interventi di impianto policiclico di tipo areale, con larghezza variabile;
- 57 plot (11,4 km) interessati da interventi di impianto policiclico di tipo lineare (ossia definibili "siepi");
- 43 plot (8,6 km) di confronto, ossia definibili testimone.

I transetti sono stati percorsi da un operatore, per due volte nel corso della stagione riproduttiva, con le seguenti date di rilievo:

	I replica	II replica
Anno 2014	17 e 18 maggio	8 - 11 giugno
Anno 2017	21 e 22 maggio	13 e 14 giugno

Come si può vedere, le date sono quasi le stesse nei due anni, con solo una differenza di quattro giorni tra le due volte, permettendo di ottenere informazioni molto simili da un punto di vista fenologico tra le due annate. Tutti i rilievi sono stati svolti nelle prime ore della giornata (dall'alba fino alle 10.00), in giornate con assenza di precipitazioni e vento debole.

In totale sono state contattate 82 specie (Tabelle 3 e 4), tra le quali prevalgono, almeno come numero di individui e di plot elementari occupati, specie palustri (cannaiola verdognola, cannaiola comune, cannareccione), specie ubiquitarie e sinantropiche (cornacchia grigia, gazza, passera d'Italia e passera mattugia, storno).

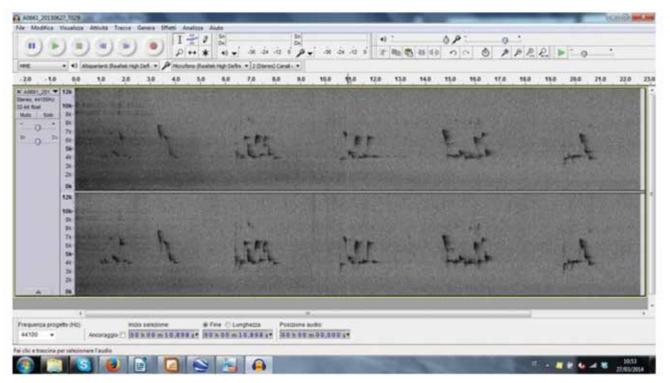


Figura 3 - Interfaccia del programma Audacity utilizzato per l'analisi delle registrazioni.

	c	ampion	e areal	le		campio	ne siep)i		testi	mone		1
		14		17		14		17	20	14	20	17	Totale
specie	A	В	Α_	В	Α	В	Α	В	Α	В	Α_	В	
1 Tuffetto				2	١.						1		3
2 Tarabusino 3 Nitticora	2	1	4	3	2	4	1		3	2	4	1	7 22
4 Sgarza ciuffetto	-	1	4	1			1	1	3	2	4	1	2
5 Airone guardabuoi		2	2	3	2		7	4	4		2	2	28
6 Garzetta	10	6	4	4	6	5	5	7	4	3	4	4	62
7 Airone bianco maggiore	1				1	1						2	5
8 Airone cenerino	14	7	2	12	8	8	8	10	12	9	13	10	113
9 Airone rosso	6	14	8	3		2	1	1	1	1	1		38
10 Cigno reale	1		1								1		2
11 Oca selvatica	1						1						1
12 Oca egiziana 13 Germano reale	7	2		6	12	1	4	3	7	2	12	3	1 59
14 Falco pecchiaiolo	l ′	~		0	1	_	4	3	′	2	12	3	1
15 Falco di palude	1	2		7	1								11
16 Albanella minore	-			1	-							1	2
17 Poiana	1			3									4
18 Gheppio	2		1	2	2	2		2	5	3	5	2	26
19 Falco cuculo	1				1				2				4
20 Lodolaio	2	1							١.,		-		3
21 Quaglia	5	10	2 12	15	2	1	4	1	2 11	20	7 9	1	18 90
22 Fagiano comune 23 Porciglione	1	10	12	15	"		2		1 **	20	9	*	1
24 Gallinella d'acqua	1 ^	2	3	5	1	1	12	13	1	5	10	9	62
25 Folaga		_	_	_	1	-	1		1	_	2	-	3
26 Cavaliere d'Italia		1		3	1	2	_	2			_		9
27 Corriere piccolo		1											1
28 Pavoncella	9	1	4	1	10	6	12	9	6	4	5		67
29 Piro piro culbianco		5		1		1		1					8
30 Piro piro boschereccio 31 Gabbiano comune					1			2	l				1 3
32 Gabbiano comune 32 Gabbiano reale					8	7	3	15	3	5	8	5	54
33 Sterna comune	1				ľ	,	3	13	"	5	0	1	1
34 Colombaccio	5	4	7	9	8	12	8	22	13	18	21	20	147
35 Tortora dal collare	4	6	9	12	15	16	23	38	14	9	12	17	175
36 Tortora selvatica	1	3	1	1	2		1	6	8	8	22	11	64
37 Cuculo	7	9	11	12	9	8	12	18	15	21	23	17	162
38 Civetta	1	1			1					1		1	5
39 Allocco	1							1					1
40 Gufo comune 41 Rondone comune	1	2		2	2	1		7		7	1	2	1 25
42 Martin pescatore	3	10	2	6	"	2	2	í	6	é	1	3	44
43 Gruccione	1	10	4	4		-	-	-	1		1		11
44 Ghiandaia marina	-		1						1		_		2
45 Upupa	1				1							1	2
46 Picchio verde		2	2	3				1	2	3		3	16
47 Picchio rosso maggiore	2	1	3	7		1		2	1		2	4	23
48 Calandrella	۱.	-	-	-	١		1	3	۱ -				4
49 Cappellaccia 50 Allodola	5 8	2	2	2	11 18	8 12	5 15	9 11	7 20	6 16	4 28	4	65 136
51 Rondine	5	2	5		10	8	11	12	9	3	8	4	77
52 Balestruccio	~	-	-		3	4	1	1	"	9		-	9
53 Cutrettola	20	23	10	23	22	24	36	62	16	22	17	33	308
54 Ballerina gialla						1							1
55 Usignolo	15	21	19	16	9	8	5	8	45	35	35	27	243
56 Merlo	8	7	14	13	3	4	6	8	7	10	9	7	96
57 Usignolo di fiume	5	4	8	11	4	2	2	1	9	7	10	7	70
58 Beccamoschino	7	29	1 36	8 32	11	29	5 40	10 57	7	22	4 28	31	28 339
59 Cannaiola verdognola 60 Cannaiola comune	7	10	1	7	4	7	19	27	9	32 5	20	4	100
61 Cannareccione	7	2	8	1	25	17	17	12	11	6	9	7	122
62 Canapino comune	Ι΄.	_	-	-						1	-		1
63 Sterpazzola	1	2	2	3	8	7	5	3	12	15	22	14	94
64 Capinera	8	20	15	17	9	8	4	8	21	23	13	23	169
65 Luì verde	1			_					l				1
66 Codibugnolo	١.	1	1	7				_	l		1	4	14
67 Cinciarella	1 2	F	7	3	-	2	F	1			10	2 7	7
68 Cinciallegra 69 Rigogolo	3	5	7	5	3	3 1	5 1	1	11 7	8	10 14	3	68 39
70 Averla piccola	2	1	1		"	1	1	1	l ′	5	14	3	5
71 Ghiandaia	3	-	4	2	1	1	1			2	1	1	16
72 Gazza	8	11	6	5	21	19	30	21	16	19	25	19	200
73 Taccola			1										1
74 Cornacchia grigia	7	13	9	25	21	12	12	20	19	23	15	26	202
75 Storno	12	8	3	12	11	17	7	15	13	16	11	13	138
76 Passera d'Italia	1 1	7	8	4	13	9	14	14	14	12	8	10	114
77 Passera mattugia	13	8	3	8	15	19	11	15	22	14	5	7	140
78 Verzellino 79 Verdone	1	1		1					1	1	2		2 5
80 Cardellino	1 1	1			3	3	3	5	2	3	1	1	22
81 Ortolano		-			6	3	6	_	~	1	5	1	22
82 Strillozzo			2		_	3		3	1		1	2	12
	238	275	250	333	332	312	369	495	401	415	453	387	4260

Tabella 3 - Numeri di contatti avvenuti. Per ognuna delle 82 specie sono riportati separatamente i totali per le tre tipologie di plot (v. testo) oltre che per anno e per replica.

		ampion	e area	le		campio	ne sieg	oi .		testi	mone		
		14	20	17	20	14		17	20	14		17	Totale
specie	Α	В	Α_	В	Α	В	Α_	В	Α	В	Α_	В	
1 Tuffetto 2 Tarabusino				2	2	4					4		6 7
3 Nitticora	2	1	4	4	-	4	1	3	3	2	4	1	25
4 Sgarza ciuffetto	~	-	-	1			_			-	-	î	2
5 Airone guardabuoi		2	2	3	4		13	4	5		2	2	37
6 Garzetta	12	7	4	6	7	7	6	8	5	3	4	4	73
7 Airone bianco maggiore 8 Airone cenerino	2 15	7	2	13	11	2	8	14	14	10	15	2 11	7 128
9 Airone rosso	6	15	8	3	**	2	1	1	1	1	2	**	40
10 Cigno reale			2						-		1		3
11 Oca selvatica							2						2
12 Oca egiziana		6		17	19	4	23	6	15	2	52	16	1 174
13 Germano reale 14 Falco pecchiaiolo	14	6		17	19	4	23	6	15	2	52	16	1
15 Falco di palude	1	2		7	î								11
16 Albanella minore				1								1	2
17 Poiana	1			3	١.,				_	-		_	4
18 Gheppio 19 Falco cuculo	2		1	2	2	2		2	5	5	6	2	29 6
20 Lodolaio	2	1			*				~				3
21 Quaglia	-	_	2			1	4	1	2		7	1	18
22 Fagiano comune	5	10	12	15	2		2		11	20	9	4	90
23 Porciglione	1	-	-	-	١.		10	10	١.	-	10		1
24 Gallinella d'acqua 25 Folaga		2	3	5	1	1	12 1	18	1	5	10 5	9	67 6
26 Cavaliere d'Italia		1		10	2	3	_	2			5		18
27 Corriere piccolo		1											1
28 Pavoncella	11	1	4	2	14	12	16	18	6	4	10		98
29 Piro piro culbianco		5		1	١.	1		1					8
30 Piro piro boschereccio 31 Gabbiano comune					2			16					1 18
32 Gabbiano reale					187	555	7	457	5	7	16	5	1239
33 Sterna comune												2	2
34 Colombaccio	6	5	9	9	10	19	15	28	15	21	25	25	187
35 Tortora dal collare	4	8 5	11 1	13 1	16 2	20	30 1	52 6	17 9	10 9	16 25	23 11	220 71
36 Tortora selvatica 37 Cuculo	7	10	11	13	10	9	13	18	16	23	25	17	171
38 Civetta	li	1		10	1		10	10	1 20	1	2-4	1	5
39 Allocco								1					1
40 Gufo comune	١.	_		_	l _	1		_				_	1
41 Rondone comune	3	3 10	2	7	7	2	2	9	6	15 10	1	3	44 46
42 Martin pescatore 43 Gruccione	4	10	5	8		2	~	1	2	10	2	3	21
44 Ghiandaia marina	~		1	•					1		-		2
45 Upupa					1							1	2
46 Picchio verde	١ .	2	2	4				1	2	3		3	17
47 Picchio rosso maggiore 48 Calandrella	2	1	3	7		1	1	2	1		2	4	23 4
49 Cappellaccia	5	2	2	2	11	8	5	9	7	6	4	4	65
50 Allodola	8	4	_	_	20	12	15	11	20	16	28	4	138
51 Rondine	6	2	7		17	16	24	62	10	7	17	8	176
52 Balestruccio	22	22	10	22	4	5	1	1		22	10	24	11
53 Cutrettola 54 Ballerina gialla	23	23	10	23	23	24 1	37	64	16	22	19	34	318 1
55 Usignolo	15	21	19	16	9	8	5	8	45	35	35	27	243
56 Merlo	8	7	14	13	3	5	6	8	7	11	9	7	98
57 Usignolo di fiume	5	4	8	11	4	2	2	1	9	7	10	8	71
58 Beccamoschino 59 Cannaiola verdognola	7	30	1 36	8 32	11	29	5 40	10 57	7	32	4 28	31	28 340
60 Cannaiola comune	7	10	1	7	4	7	20	27	9	5	20	4	101
61 Cannareccione	7	2	8	1	25	17	17	12	11	6	9	7	122
62 Canapino comune										1			1
63 Sterpazzola	1	2	2	3	8	7	5	3	12	15	22	14	94
64 Capinera 65 Luì verde	8	20	15	17	9	8	4	8	21	23	13	23	169 1
66 Codibugnolo	1 *	2	2	14							7	6	31
67 Cinciarella	1	_	_	3				1				4	9
68 Cinciallegra	6	5	9	6	5	3	5	1	14	10	12	10	86
69 Rigogolo	3		1		3	1	1	1	7	5	14	3	39
70 Averla piccola 71 Ghiandaia	2	1	1	2	1	1	1			2	1	1	5 16
72 Gazza	10	15	6	5	28	32	39	31	21	26	32	31	276
73 Taccola			1			-					-		1
74 Cornacchia grigia	9	14	10	36	28	14	13	27	37	32	18	36	274
75 Storno	87	21	17	54	12	102	12	92	34	30	19	100	580
76 Passera d'Italia 77 Passera mattugia	2 18	10 10	12 3	7 15	26 36	14 30	26 20	34 27	27 41	18 24	16 10	17 9	209 243
78 Verzellino	1 20	10	3	1	30	30	20	21	1	24	10	9	243
79 Verdone	1	1		_					-	1	2		5
80 Cardellino		1			3	3	4	5	2	3	1	1	23
81 Ortolano			2		8	3	6			1	5	1	24
82 Strillozzo	347	313	280	435	603	1013	471	3 1175	505	489	579	2 545	12 6755
	341	323	200	-100	, 500	2020	-41.4	2270	, 500	-100	318	543	5,55

Tabella 4 - Numero di individui censiti. Per ognuna delle 82 specie sono riportati separatamente i totali per le tre tipologie di plot (v. testo) oltre che per anno e per replica.

Paiono invece relativamente scarse sia le specie legate strettamente agli agroecosistemi (allodola, cappellaccia, ortolano, strillozzo), con l'eccezione della cutrettola, sia le specie degli arbusteti e delle siepi (usignolo, sterpazzola).

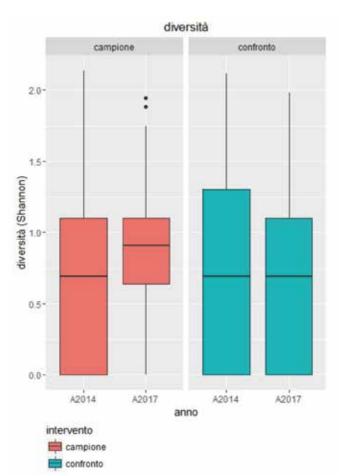
Risultati delle analisi statistiche Monitoraggio degli effetti del progetto

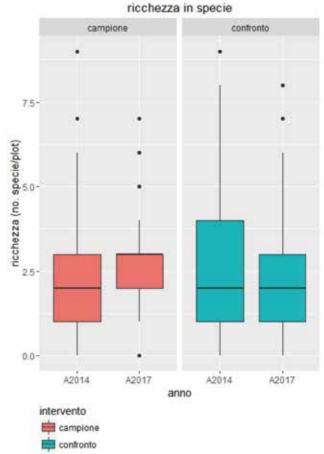
Come accennato nella descrizione dei metodi, era possibile analizzare i dati raccolti in almeno quattro maniere diverse, ossia tenendo unite o separate le due repliche annuali di censimento e considerando solo gli effetti di interventi di tipo areale, oppure tutti gli interventi, compresi quelli lineari ("siepi"). Tutte le quattro

tipologie di analisi sono state realizzate, ottenendo solo pochi esiti significativi dei test realizzati, esiti che hanno riguardato solo i disegni di analisi del primo tipo, ossia i confronti tra interventi di tipo areale e plot testimone, considerando separatamente le due repliche annuali di censimento. Per brevità, pertanto, presentiamo solo i risultati di questo disegno di analisi (Tabella 5).

Come si può vedere, abbiamo ottenuto una differenza statisticamente significativa per l'abbondanza di tre specie e per l'indice di diversità. In questi quattro casi l'effetto dell'intervento è sempre risultato positivo, ossia l'intervento Life Inbiowood, quanto meno per gli impianti di tipo areale, ha avuto un effetto positivo sull'abbondanza di tre specie di uccelli nidificanti e sulla diversità

		dell'intervento
	>0	n.s.
++	3.05	0.0432*
++	2.85	0.0366*
++	3.41	0.0254*
	>0	n.s.
	2.88	0.0388*
	>0	n.s.
	++	++ 3.05 ++ 2.85 ++ 3.41 >0 >0 >0 >0 >0 >0 >0 >0 >0


Tabella 5 - Risultati dei rilevamenti del progetto Inbiowood, per ognuna delle 11 specie analizzate sono riportati i risultati del confronto statistico, sia in termini di AICc (criterio di informazione di Akaike) come differenza tra l'AICc del modello e quella del modello senza effetto degli interventi del progetto.


complessiva del popolamento di uccelli, limitatamente alle specie legate agli ambienti golenali, forestali e fluviali. Tutti gli altri confronti non hanno dato risultati significativi, per cui non pare che si siano registrati effetti negativi dell'intervento. Se si osserva la distribuzione dei valori degli indici considerati, oltre all'effetto positivo dell'intervento sulla diversità (Figura 4) che, come detto, risulta statisticamente positivo, si può altresì notare che anche per la ricchezza specifica abbiamo registrato un incremento nei plot campione, rispetto a quanto registrato nei plot testimone (Figura 5).

Confronto pioppeti tradizionali - impianti policiclici

In totale abbiamo rilevato 30 specie, 25 negli impianti policiclici, 24 nel pioppeto. Le specie in comune sono 19; le 11 specie rilevate solo nell'una o nell'altra tipologia, tutte comunque con frequenza molto bassa, sono legate ad ambienti marginali rispetto agli impianti (aironi, germano reale, tortora dal collare, martin pescatore, gallinella d'acqua) o esclusivamente migratrici (luì bianco o forapaglie macchiettato) con l'eccezione di tortora selvatica e gazza (rilevate solo negli impianti policiclici) e di picchio verde e piglia-

Figura 4 - Box plot dei valori di diversità (Shannon) calcolata per le specie specie maggiormente legate agli ambienti golenali, forestali e fluviali misurati a livello di plot, considerando separatamente le due repliche di censimento annuale. Sono raffigurate la madiana dei valori (linea spessa), l'intervallo interquartile (aree in colore) e il range dei valori.

Figura 5 - Box plot dei valori di ricchezza (n. di specie) calcolata per le specie specie maggiormente legate agli ambienti golenali, forestali e fluviali misurati a livello di plot, considerando separatamente le due repliche di censimento annuale. Sono raffigurate la madiana dei valori (linea spessa), l'intervallo interquartile (aree in colore) e il range dei valori.

	Piantagio	oni policicliche	Pioppet	i tradizionali	Effetto delle piantagioni policicliche	Effetto delle altre variabili		
	Media	IC (95%)	Media	IC (95%)		Distanza	Orario	
Ricchezza per punto	10,00	(9,50-10,50)	9,65	(8,84-10,45)	n.s.	- (**)	n.s.	
Diversità (indice di Shannon)	1,758	(1,701-1,815)	1,776	(1,660-1,892)	n.s.	-(***)	n.s.	
Vocalizzazioni totali	250,3	(229,4-271,2)	152,4	(137,7-167,1)	+ (***)	- (*)	- (**)	

Tabella 6 - Risultati per il popolamento complessivo. Sono riportati i dati rilevati, il segno e la significatività delle variabili. Il segno "+" indica, rispettivamente per i tre effetti testati, che i valori sono significativamente maggiori negli impianti policiclici rispetto ai pioppeti, all'aumentare della distanza e al progredire dell'orario. Il segno "-" indica l'effetto opposto. I livelli di significatività sono (*) p<0.05; (**) p<0.01; (***) p<0.001; n.s indica che non è stato riscontrato effetto significativo.

mosche (rilevate solo nel pioppeto).

Le analisi confermano che tra pioppeti tradizionali e impianti policiclici non c'è differenza di ricchezza né di diversità (Tabella 6). Sostanzialmente le due aree ospitano quindi la stessa avifauna nidificante e il quadro è peraltro simile a quello delineato anche in altri studi nei pioppeti della pianura padana (BOGLIANI 1988).

Per quanto riguarda i livelli di attività invece la differenza è significativa e molto consistente a favore degli impianti policiclici dove le vocalizzazioni sono mediamente il 40% in più (Tabella 7); inoltre su 14 specie che è stato possibile analizzare singolarmente, l'attività è risultata significativamente maggiore negli impianti policiclici, e per una soltanto nei pioppeti (Tabella 2).

	n. di vocal	izzazioni/10'	Effetto delle piantagioni	Effetto de varia	
Specie	Piantagioni policicliche	Pioppeti tradizionali	policicliche	Distanza	Orario
Cornacchia grigia	49.4	26.6	+(*)	n.s.	n.s.
Usignolo	40.6	12.2	+(*)	n.s.	n.s.
Rigogolo	27.1	21.2	n.s.	n.s.	n.s.
Fringuello	7.0	35.8	- (**)	+(*)	n.s.
Cinciallegra	30.3	8.5	+(*)	- (*)	n.s.
Capinera	24.6	11.4	+(*)	- (*)	n.s.
Picchio rosso maggiore	17.4	8.5	+(*)	n.s.	n.s.
Fagiano comune	15.3	9.9	n.s.	n.s (***)	
Merlo	18.9	1.1	+(*)	n.s.	- (***)
Storno	3.7	8.9	n.s.	n.s.	n.s.
Cuculo	4.6	2.0	n.s.	n.s.	- (**)
Colombaccio	4.3	0.4	+(*)	- (*)	- (*)
Codibugnolo	3.4	0.5	n.s.	n.s.	n.s.
Cinciarella	0.6	2.6	n.s.	- (*)	+(**)
Ghiandaia	0.2	0.7			
Pigliamosche		0.8			
Tortora dal collare	0.9				
Airone cenerino	0.6	0.1			
Gazza	0.7				
Gallinella d'acqua	0.2	0.3			
Gheppio	0.3	0.2			
Nitticora	0.3	0.1			
Picchio verde		0.4			
Sterpazzola		0.2			
Luì bianco		0.1			
Martin pescatore		0.1			
Forapaglie macchiettato	0.1				
Germano reale	0.1				
Rondone comune		0.1			
Tortora selvatica	0.1				

Tabella 7 - Risultati per le singole specie. Sono riportati i dati rilevati, il segno e la significatività delle variabili. Il segno "+" indica, rispettivamente per i tre effetti testati, che l'attività è significativamente maggiore negli impianti policiclici rispetto ai pioppeti, all'aumentare della distanza e al progredire dell'orario. Il segno "-" indica l'effetto opposto. I livelli di significatività sono (*) p<0.05; (**) p<0.01; (***) p<0.001; n.s indica che non è stato riscontrato effetto significativo.

Discussione e conclusioni

Le analisi riportate nei risultati portano a concludere che gli impianti policiclici hanno un effetto positivo sulla biodiversità delle comunità ornitiche rispetto a forme tradizionali di coltivazione. Infatti si registra da un lato un incremento di biodiversità al passaggio da pioppeti tradizionali alle piantagioni policicliche, e dall'altro gli impianti policiclici hanno un effetto positivo anche se confrontati con aree interessate dai soli coltivi.

I livelli di attività e diversità più elevati registrati negli impianti policiclici ne indicano, rispetto ai pioppeti tradizionali e alle colture, la maggiore "capacità portante", cioè, in sostanza una maggiore disponibilità di risorse per l'avifauna. Nel caso del confronto con i pioppeti, nonostante il campione studiato sia molto ridotto (circa 50 ha di impianti policiclici, in una matrice costituita sostanzialmente da agricoltura intensiva e pioppicoltura intensiva) e il popolamento di uccelli nei due tipi di piantagione sia risultato molto simile, le differenze che sono emerse in termini di attività sono invece molto nette. Nel caso dei coltivi, ossia delle aree interessate direttamente dal progetto Inbiowood, si sono riscontrate differenze minori, rispetto alle aree testimone. Questo risultato dipende verosimilmente da due fattori. Il primo è la giovane età degli impianti (2-3 anni), che non ha permesso di dispiegare tutto il potenziale effetto, che verosimilmente sarà maggiore a maggiore distanza di tempo dall'impianto. Un altro importante fattore limitante è legato alle pratiche colturali messe in atto nell'area del progetto. Infatti gli impianti sono stati interessati nei primi due anni dall'impianto, da massicci interventi di fresatura e diserbo chimico, interventi entrambi che hanno ridotto fortemente la cacacità portante del sistema, quantomeno per gli uccelli.

Rispetto ai coltivi e alle piantagioni tradizionali, in cui le densità di uccelli sono in genere molto basse (RIFFELL et al. 2011), la maggiore "capacità portante" delle piantagioni policicliche si traduce in una maggiore capacità di "surrogare" le formazioni forestali naturali o seminaturali (Martin-García et al. 2013). E dove i boschi, come nelle pianure della regione mediterranea, sono fortemente ridotti o del tutto scomparsi, le piantagioni policicliche possono assumere una particolare rilevanza (Martin-García et al. 2016).

In conclusione si può dire che interventi come quelli del progetto Life Inbiowood sembrano rivestire una notevole importanza per la biodiversità in contesti estremamente impoveriti come sono quelli delle pianure italiane. Si suggerisce nel futuro di curare maggiormente l'importanza degli effetti sulla biodiversità limitando al minimo le cure colturali, e si auspica una prosecuzione del monitoraggio anche nei prossimi anni, in modo da verificare se a una maggiore distanza di tempo si avrà una più evidente espressione degli effetti positivi dell'impianto di piantagioni policicliche su quella importante componente della biodiversità che è rappresentata dall'avifauna.

BIBLIOGRAFIA

Acevedo M.A., VILLANUEVA-RIVERA L.J., 2006 - From the field: using automated digital recording systems as effective tools for the monitoring of birds and amphibians. Wildlife Society Bulletin, 34 (1): 211-214.

Bibby C.J., Burgess N.D., Hill D.A., 1992 - **Bird Census Techniques.** London: Academic Press.

BLONDEL J., ARONSON J., 1999 - **Biology and Wildlife of the Mediterranean Region.** Oxford University Press, Oxford.

Bogliani G., 1988 - **Densità e scelta dell' habitat degli uccelli nidificanti in pioppeti coltivati.** Rivista italiana di ornitologia 58: 129-141.

Buresti Lattes E., Mori P., 2009 - **Impianti policiclici permanenti: L'Arboricoltura da Legno si avvicina al bosco.** Sherwood 150: 5-8.

CARNUS J.-M., PARROTTA J., BROCKERHOFF E., ARBEZ M., JACTEL H., KREMER A., LAMB D., O'HARA K., WALTERS B., 2006 - **Planted forests and biodiversity.** Journal of Forestry 104: 65-77.

Ceus-Murillo A., Deppe J.L., Allen M.F., 2009 - **Using soundscape recordings to estimate bird species abundance, richness, and composition.** Journal of Field Ornithology 80: 64-78.

De Lucas M., Janss G.F.E., Ferrer M., 2005 - A bird and small mammal BACI and IG design studies in a wind farm in Malpica (Spain). Biodiversity and Conservation 14: 3289-3303.

DIAMOND A.W., FILION F. (EDS.), 1987 - **The Value of Birds. International Council for Bird Preservation.** Technical Publication No. 6. Cambridge.

Furness R.W., Greenwood J.J.D. (eds.), 1993 - **Birds as Monitors of Environmental Change.** Chapman e Hall. London.

Gregory R.D., Noble D., Field R., Marchant J., Raven M., Gibbons D.W., 2003 - **Using birds as indicators of biodiversity.** Ornis Hungarica, 12-13: 11-24.

Gregory R.D., VAN STRIEN A., VORISEK P., MEYLING A.W.G., NOBLE D.G., FOPPEN R.P.B., GIBBONS D.W., 2005 - **Developing indicators for European birds.** Philosophical transactions of the Royal Society 360: 269-288.

HILTY J., MERENLENDER A., 2000 - Faunal indicator taxa selection for monitoring ecosystem health. Biological Conservation 92: 185-197.

Keast A. (ed.), 1990 - **Biogeography and ecology of forest bird communities.** SPB Academic Publishing bv, The Hague, The Netherlands.

Martín-García J., Barbaro L., Diez J.J., Jactel H., 2013 - **Contribution of poplar plantations to bird conservation in riparian landscapes.** Silva Fennica 47: 1-17.

Martín-García J., Jactel H., Oria-de-Rueda J., Diez J., 2016 - **The Effects of Poplar Plantations on Vascular Plant Diversity in Riparian Landscapes.** Forests 7:50.

MORI P., 2015 - **Piantagioni policicliche: arboricoltura e selvicoltura più vicine.** 670–675. In Cancio O. (a cura di), Proceedings of the Second
International Congress of Silvicolture. November 26th - 29th 2014. Accademia
Italiana di scienze Forestali, Firenze.

 ${\sf R}$ Core ${\sf Team}, 2016$ - ${\sf R}$: A language and environment for statistical computing.

RIFFELL S., VERSCHUYL J., MILLER D., WIGLEY T.B., 2011 - A meta-analysis of bird and mammal response to short-rotation woody crops. GCB Bioenergy 3: 313-321.

Tellini Florenzano G., Guidi C., Di Stefano V., Mini L., Londi G., Campedelli T., 2006 - Effetto dell'ambiente a scala di habitat e di paesaggio su struttura e composizione della comunità ornitica delle abetine casentinesi (Appennino Settentrionale). Rivista Italiana di Ornitologia 76 (1): 151-166.

Tellini Florenzano G., Londi G., Mini L., Tiberi R., Campedelli T., 2009 - **Frammentazione delle Foreste mediterranee e biodiversità: due casi di studio in Italia centrale.** Atti del Terzo Congresso Nazionale di Selvicoltura. Taormina (ME), 16-19 ottobre 2008. In: Ciancio O. (ed.). Atti del Terzo Congresso Nazionale di Selvicoltura. Taormina (ME), 16-19 ottobre 2008. Volume I-Accademia Italiana di Scienze Forestali, pp. 295-299.

Thomas L., Buckland S.T., Rexstad E.A., Laake J.L., Strindberg S., Hedley S.L., Bishop J.R.B., Marques T.A., 2010 - **Distance software: design and analysis of distance sampling surveys for estimating population size.** Journal of Applied Ecology 47:5-14.

ULICZKA H., ANGELSTAM P., 2000 - **Assessing conservation values of forest stands based on specialized lichens and birds.** Biological Conservation 95: 343-351.

ZUUR A.F., IENO E.N., WALKER N. J., SAVELIEV A. A., SMITH G. M., 2009 - **Mixed Effects Models and Extensions in Ecology with R. Springer-Verlag,** New York.

Appendice 1

Scheda per la raccolta dei dati utilizzata nei transetti lineari

rilevatore						data				-1	
cielo		ora		vento		cielo		ora		vento	
GPS	specie	ind	att	dx/sx	dist	GPS	specie	ind	att	dx/sx	di
		-									
-											
		-									
-		-						-			
					-						
-											
					1 5						
					- 7						
Note:					_	Note:					

Appendice 2

Scheda per la raccolta dei dati ambientali e stazionali nei punti di ascolto

	Life InBiowood					
	RILEVAMENTO AVIFAUNA					
	stazioni di ascolto	D.R.E.JM.				
Area di indagine:						
Rilevatore:						
Codice stazione:						
Gps						
Data://	Ora:					
Codice registrazione:						
	Condizioni meteo					
Cielo	Vento					
§sereno		\$0 - il fumo si alza verticalmente				
§nuvole per 1/4	\$1 - la direzione del vento è il agitano nemmeno le foglie	§1 – la direzione del vento è indicata solo dal fumo; non si agitano nemmeno le foglie				
§nuvole per 1/2	\$2 - le foglie fremono; si sen	\$2 - le foglie fremono; si sente la brezza sul viso				
§nuvole per 3/4	\$3 - foglie e rametti sono cos	§3 - foglie e rametti sono costantemente agitati				
Scoperto	§4 - il vento solleva la polvere	2				
§nebbia	\$5 - gli arbusti cominciano a c	oscillare				
	Note					

REPORT SULL'EFFICACIA DI CONTROLLO DELL'AZOTO da parte delle Piantagioni Policicliche Permanenti lineari

di Horizon

In data 4 aprile 2017 due tecnici della Horizon srl si sono recati presso il sito sperimentale nei pressi di Gazzo Veronese (VR). In loco, su indicazione di un tecnico del Consorzio di Bonifica Veronese, sono stati identificati i punti di campionamento per la cattura delle acque circolanti nel terreno. Sono state identificate 4 aree campione in corrispondenza di 4 impianti arborei differenti, in cui infiggere un lisimetro in posizione adiacente al corso d'acqua e uno sul lato campagna. I tecnici Horizon, per ogni punto identificato, hanno effettuato una buca con trivella della profondità di circa 1 m in cui alloggiare il lisimetro della lunghezza di 90 cm (costituito da corpo in PVC e coppa porosa ceramica). Affinché il lisimetro fosse ben alloggiato è stato aggiunto del suolo del sito attorno alle pareti e successivamente compattato con acqua deionizzata. I quattro punti di campionamento sono stati identificati con un numero crescente (1-2-3-4) e lettera (A-B) rispettivamente adiacente al corso d'acqua e al piano di campagna. Il tecnico del Consorzio di Bonifica Veronese è stato istruito dai nostri tecnici affinché fosse in grado di prelevare il campione di acqua raccolto all'interno del lisimetro in maniera autonoma. L'acqua circolante del terreno penetra all'interno della coppa porosa, grazie alla depressione creata all'interno del tubo per mezzo di una pompa da vuoto.

Figura 1 - Planimetria del sito sperimentale.

Tale azione avviene nel giro di qualche giorno. I campioni acquosi vengono raccolti in bottiglie da 250 ml in PVC, etichettati e inviati in contenitori refrigerati tramite corriere, ai nostri laboratori. Per standardizzare il processo si è stabilito, con il tecnico del Consorzio di Bonifica Veronese, di creare la depressione nei lisimetri il lunedì e prelevare il campione il mercoledì/giovedì. Tale procedura è stata stabilita per assicurare la consegna dei campioni ai nostri laboratori entro il venerdì.

I campioni sono stati prelevati ogni settimana dal 19 aprile 2017 per 32 settimane. In data 13-12- 2017 è stato eseguito l'ultimo prelievo poiché in seguito è stato rilevato un danneggiamento di un lisimetro, con necessità di sostituzione. Il lisimetro è stato sostituito

in data 12-02-2018. Le 8 settimane mancanti verranno campionate nel 2018

Tutti i campioni sono stati sottoposti ad analisi chimica per i seguenti parametri:

- Azoto totale (Metodo: UNI EN 12260:2004)
- Azoto ammoniacale (Metodo: APAT CNR IRSA 3030 Man 29 2003)
- Azoto nitrico (Metodo: EPA 9056A 2007)

Risultati

Nelle Tabelle 1-2-3-4 sono riportati i risultati delle analisi condotte sui campioni d'acqua.

Parametro	N ammon	iacale μg/L	N nitri	co μg/L	N total	e μg/L
Data	1 A	1B	1A	1B	1A	1B
19/04/2017	<6,7	2700	190000	960	240000	4700
26/04/2017	<6,7	2900	190000	2100	210000	5800
02/05/2017	n.d	n.d	n.d	n.d	n.d	n.d
09/05/2017	n.d	3400	-	27	n.d	3900
17/05/2017	<6,7	3000	200000	930	190000	4100
23/05/2017	n.d	3100	n.d	490	n.d	4200
30/05/2017	n.d	n.d	n.d	n.d	n.d	n.d
06/06/2017	n.d	1700	n.d	1100	n.d	5500
21/06/2017	n.d	<6,7	n.d	5000	n.d	9000
28/06/2017	260	<6,7	210000	1300	20000	6000
05/07/2017	44	<6,7	200000	1000	240000	5700
12/07/2017	40	1700	200000	3100	230000	6900
19/07/2017	n.d	1000	n.d	3400	n.d	5400
26/07/2017	31	<6,7	200000	910	280000	3800
01/08/2017	60	<6,7	220000	2700	240000	3900
08/08/2017	49	<6,7	220000	1000	240000	2700
22/08/2017	n.d	<6,7	n.d	<190	n.d	1500
29/08/2017	7,6	<6,7	230000	1600	240000	3300
05/09/2017	n.d	n.d	n.d	n.d	n.d	n.d
13/09/2017	<6,7	<6,7	230000	2800	270000	3700
20/09/2017	<6,7	<6,7	220000	2000	30000	3100
27/09/2017	<6,7	<6,7	260000	1800	260000	2800
03/10/2017	<6,7	n.d	260000	n.d	32000	n.d
10/10/2017	<6,7	<6,7	240000	2200	300000	2500
18/10/2017	<6,7	<6,7	250000	3000	280000	3700
24/10/2017	<6,7	<6,7	250000	2400	270000	2800
02/11/2017	<6,7	<6,7	240000	2600	260000	2900
08/11/2017	n.d	<6,7	n.d	1300	n.d	2600
14/11/2017	<6,7	<6,7	260000	4300	290000	5100
21/11/2017	n.d	<6,7	n.d	2600	n.d	3400
29/11/2017	n.d	6,9	n.d	900	n.d	1800
05/12/2017	n.d	n.d	n.d	n.d	n.d	n.d
13/12/2017	n.d	<67	n.d	220	n.d	1600

Tabella 1 - Esiti analisi dei campioni relativi al punto di campionamento 1 (1A adiacente al corso d'acqua e 1B adiacente al piano di campio).

Osservando i risultati delle analisi, appare evidente come la concentrazione di azoto in forma ammoniacale diminuisca dal punto

B al punto A. Le concentrazioni di azoto nitrico e azoto totale, al contrario aumentano significativamente dal punto B al punto A.

Parametro	N ammon	iacale μg/L	N nitri	ico μg/L	N tota	le μg/L
Data	2A	2B	2A	2B	2A	2B
19/04/2017	3100	3600	<19	39	5000	4900
26/04/2017	3200	4000	<19	<19	4900	4900
02/05/2017	n.d	3800	n.d	<19	n.d	5000
09/05/2017	4300	4800	<19	<19	4600	4500
17/05/2017	3700	4500	<19	<19	4400	4400
23/05/2017	3600	n.d	<19	n.d	4800	n.d
30/05/2017	4800	4300	31	<19	5200	4600
06/06/2017	n.d	4400	n.d	52	n.d	4700
21/06/2017	2700	4700	1900	<19	5200	4800
28/06/2017	740	4600	1600	<19	3000	4700
05/07/2017	160	4300	370	<19	1400	5500
12/07/2017	n.d	4200	n.d	<19	n.d	4900
19/07/2017	<6,7	5300	<190	<190	1100	5000
26/07/2017	n.d	6600	n.d	<190	n.d	5300
01/08/2017	n.d	5100	n.d	<190	n.d	5000
08/08/2017	<6,7	5000	<190	<190	1600	5000
22/08/2017	n.d	n.d	n.d	n.d	n.d	n.d
29/08/2017	n.d	3500	n.d	<190	n.d	4300
05/09/2017	n.d	n.d	n.d	n.d	n.d	n.d
13/09/2017	n.d	<6,7	n.d	3200	n.d	3900
20/09/2017	n.d	380	n.d	800	n.d	4000
27/09/2017	n.d	940	n.d	330	n.d	3500
03/10/2017	<6,7	970	2300	46	3300	4200
10/10/2017	n.d	3600	n.d	<19	n.d	3900
18/10/2017	n.d	3500	n.d	<19	n.d	3900
24/10/2017	<6,7	1400	560	190	1200	3400
02/11/2017	<6,7	n.d	630	n.d	1300	n.d
08/11/2017	n.d	1500	n.d	2800	n.d	6600
14/11/2017	n.d	1500	n.d	840	n.d	4800
21/11/2017	n.d	n.d	n.d	n.d	n.d	n.d
29/11/2017	n.d	2600	n.d	210	n.d	5300
05/12/2017	<67	790	11000	<190	11000	4000
13/12/2017	<67	700	3700	<190	5500	3700

Tabella 2 - Esiti analisi dei campioni relativi al punto di campionamento 2 (2A adiacente al corso d'acqua e 2B adiacente al piano di campo).

Osservando i risultati delle analisi, appare evidente come la concentrazione di azoto ammoniacale sia maggiore nel punto B che

nel punto A. Le concentrazioni di azoto nitrico sembrano aumentare dal punto B al punto A, così come per l'azoto totale.

Parametro	N ammon	iacale μg/L	N nitr	ico μg/L	N tota	le μg/L
Data	3A	3B	3A	3B	3A	3B
19/04/2017	7,7	190	570	42	1500	740
26/04/2017	<6,7	120	190	<19	1000	700
02/05/2017	<6,7	140	160	<19	1200	750
09/05/2017	<6,7	170	290	<19	730	410
17/05/2017	170	180	380	<19	960	440
23/05/2017	25	n.d	330	n.d	960	n.d
30/05/2017	<6,7	390	300	20	890	850
06/06/2017	130	440	260	<19	880	910
21/06/2017	350	1300	<19	<19	1100	2100
28/06/2017	460	320	130	<19	1200	830
05/07/2017	310	260	390	<19	1500	810
12/07/2017	120	n.d	180	n.d	980	n.d
19/07/2017	n.d	160	n.d	<190	n.d	780
26/07/2017	<6,7	140	<190	<190	1000	690
01/08/2017	n.d	n.d	n.d	n.d	n.d	n.d
08/08/2017	n.d	22	n.d	<190	n.d	760
22/08/2017	<6,7	<6,7	<190	<190	610	490
29/08/2017	n.d	n.d	n.d	n.d	n.d	n.d
05/09/2017	<6,7	<6,7	<19	<19	1100	580
13/09/2017	n.d	n.d	n.d	n.d	n.d	n.d
20/09/2017	n.d	<6,7	n.d	<19	n.d	500
27/09/2017	n.d	<6,7	n.d	<19	n.d	560
03/10/2017	n.d	n.d	n.d	n.d	n.d	n.d
10/10/2017	n.d	n.d	n.d	n.d	n.d	n.d
18/10/2017	<6,7	<6,7	230	130	1600	900
24/10/2017	<6,7	<6,7	<190	250	1100	800
02/11/2017	<6,7	<6,7	<190	690	820	1100
08/11/2017	n.d	n.d	n.d	n.d	n.d	n.d
14/11/2017	n.d	n.d	n.d	n.d	n.d	n.d
21/11/2017	2700	n.d	650	n.d	4000	n.d
29/11/2017	<6,7	<6,7	10000	19000	10000	20000
05/12/2017	<67	<67	15000	23000	16000	25000
13/12/2017	<67	<67	10000	21000	13000	29000

Tabella 3 - Esiti analisi dei campioni relativi al punto di campionamento 3 (3A adiacente al corso d'acqua e 3B adiacente al piano di campio).

Osservando i risultati delle analisi, appare evidente come la concentrazione di azoto in forma ammoniacale diminuisca dal punto B al punto A. Le concentrazioni di azoto nitrico sembrano più alte

nel punto A rispetto al punto B. Anche le concentrazioni dell'azoto totale aumentano dal punto B al punto A, ma in maniera più significativa.

Parametro	N ammon	iacale μg/L	N nitri	co μg/L	N total	e μg/L
Data	4A	4B	4A	4B	4A	4B
19/04/2017	<6,7	<6,7	120000	3400	150000	3700
26/04/2017	<6,7	n.d	110000	n.d	150000	n.d
02/05/2017	n.d	<6,7	n.d	2400	n.d	3300
09/05/2017	<6,7	<6,7	120000	3300	120000	3400
17/05/2017	<6,7	<6,7	120000	3700	120000	3900
23/05/2017	9,9	<6,7	130000	4400	150000	4200
30/05/2017	<6,7	<6,7	130000	3900	130000	4200
06/06/2017	<6,7	<6,7	120000	4100	120000	4500
21/06/2017	<6,7	18	86000	2300	94000	3300
28/06/2017	92	<6,7	76000	1900	88000	2000
05/07/2017	<6,7	130	74000	410	92000	2200
12/07/2017	<6,7	<6,7	80000	460	70000	2000
19/07/2017	<6,7	<6,7	39000	200	44000	2000
26/07/2017	<6,7	<6,7	56000	<190	59000	2000
01/08/2017	8,5	38	51000	<190	58000	2100
08/08/2017	<6,7	<6,7	57000	250	64000	2000
22/08/2017	<6,7	<6,7	52000	300	58000	1800
29/08/2017	n.d	<6,7	n.d	<190	n.d	1700
05/09/2017	n.d	<6,7	n.d	360	n.d	1600
13/09/2017	<6,7	<6,7	58000	450	65000	1700
20/09/2017	<6,7	<6,7	76000	320	82000	1600
27/09/2017	<6,7	<6,7	120000	780	130000	2000
03/10/2017	14	<6,7	110000	660	130000	2000
10/10/2017	n.d	<6,7	n.d	69	n.d	1200
18/10/2017	<6,7	<6,7	110000	630	110000	1600
24/10/2017	<6,7	n.d	110000	n.d	110000	n.d
02/11/2017	<6,7	<6,7	110000	710	110000	1600
08/11/2017	n.d	<6,7	n.d	<190	n.d	1100
14/11/2017	n.d	<6,7	n.d	940	n.d	2000
21/11/2017	n.d		n.d	n.d	n.d	n.d
29/11/2017	n.d	<6,7	n.d	1400	n.d	2200
05/12/2017	n.d	n.d	n.d	n.d	n.d	n.d
13/12/2017	<67	<67	160000	2200	170000	3800

Tabella 4 - Esiti analisi dei campioni relativi al punto di campionamento 4 (4A adiacente al corso d'acqua e 4B adiacente al piano di campio).

Osservando i risultati delle analisi, appare evidente come la concentrazione di azoto ammoniacale del punto B e A siano sovrap-

ponibili. Le concentrazioni di azoto nitrico e azoto totale aumentano significativamente dal punto B al punto A.

Commento ai risultati

Sulla base dei dati acquisiti è possibile osservare come:

- in tutti i 4 punti la concentrazione dell'azoto ammoniacale tenda a diminuire dal punto B al punto A;
- la concentrazione dell'azoto nitrico diminuisce in tutti i casi dal punto A al punto B, in maniera più o meno evidente;
- la concentrazione dell'azoto totale segue l'andamento dell'azoto nitrico, essendo la forma di azoto più presente nei campioni sottoposti ad analisi.

Discussione

Le concentrazioni di azoto ammoniacale ottenute risultano piuttosto basse in tutti i campioni analizzati. L'azoto ammoniacale infatti viene adsorbito e trattenuto sulle superficie delle argille e della sostanza organica, trovandosi così nella soluzione circolante del terreno in quantità molto ridotte e per tempi molto brevi. I picchi di concentrazione sono presumibilmente da imputare ai trattamenti di fertilizzazione azotata eseguiti nei coltivi adiacenti, la quantità di azoto ammoniacale diminuisce infatti allontanandoci dai terreni coltivati e avvicinandoci al corso d'acqua.

Le concentrazioni di **azoto nitrico** sono significativamente più elevate rispetto alle concentrazioni di azoto ammoniacale e coincidono spesso con le concentrazioni di azoto totale. L'effetto "fascia tampone" di riduzione dei nitrati nel terreno non è stata di fatto riscontrata. Il problema sembra essere dovuto all'abbassamento consistente, e non prevedibile, della falda freatica per via della ridotta piovosità riscontrata nel 2017 (rilievi e campionamenti effettuati tra primavera 2017 e primavera 2018), come si può riscontrare nella Tabella 5, dove è possibile notare come nel 2017 si sia riscontrata una forte riduzione della piovosità nell'area di Gazzo Veronese, sia rispetto al 2016 (-32,6%) che ai primi 8 mesi del 2018 (-54,2%). In tali condizioni la falda in molti casi è infatti scesa a oltre 100 cm di profondità. I siti di installazione dei lisimetri erano stati scelti in virtù proprio della presenza di una falda freatica rela-

tivamente superficiale, trattandosi di aree vallive altimetricamente molto depresse in quanto collocate in aree di recente bonifica idraulica (paleovalle del fiume Tartaro).

La forte differenza di concentrazione tra i lisimetri posti in prossimità dei campi coltivati (posizione B) e quella in prossimità del corso d'acqua (posizione A), è spiegabile se si considerano due fattori concomitanti:

- la pregressa e intensiva coltivazione di mais, con intensa somministrazione di fertilizzanti azotati fino in prossimità del corso d'acqua:
- 2. la scarsa piovosità e la modesta circolazione dell'acqua nel suolo che ha favorito l'accumulo di azoto nello spazio compreso tra gli apparati radicali delle specie erbacee e la falda freatica;
- 3. la condizione per cui il terreno, non adeguatamente saturo d'acqua, non ha consentito l'instaurarsi del processo di denitri-

ficazione naturale che si verifica solo in condizioni anaerobiche. L'efficienza degli apparati radicali di alberi e arbusti nella riduzione dei nitrati che transitano dai campi coltivati ai corsi d'acqua è stata tuttavia dimostrata dal LIFE Fasce Tampone Boscate (LIFE99/ENV/IT/000083) sviluppato proprio in Veneto nel periodo 2000-2002 nell'area del Consorzio di Bonifica Dese-Sile. Tale progetto ha mostrato che gli apparati radicali ben sviluppati di alberi e arbusti sono in grado di ridurre mediamente del 52% la quantità di nitrati che attraversano una fascia tampone larga circa 6 m. A maggior ragione, in condizioni di piovosità "normale" per la zona, ci si può aspettare che formazioni larghe fino a 50 m come quelle realizzate lungo il fiume Tartaro a Gazzo Veronese nell'ambito del progetto LIFE+ InBioWood, possano svolgere tale compito con efficacia almeno pari.

Inoltre, data la giovane età delle piante al momento della misurazione, sicuramente nei prossimi anni l'apparato radicale potrà svilupparsi ulteriormente e rendere sempre più efficace l'effetto "tampone" che le Piantagioni 3P potranno svolgere nell'abbattimento del livello di concentrazione dei nitrati.

Anno	2016		2	017	2018	
	T. max (C°)	Pioggia (mm)	T. max (C°)	Pioggia (mm)	T. max (C°)	Pioggia (mm)
Gennaio	16	64	11	20	15	30
Febbraio	14	189	15	90	10	131
Marzo	20	77	24	20	20	166
Aprile	24	61	25	72	27	57
Maggio	28	202	32	119	30	139
Giugno	35	199	36	97	33	130
Luglio	35	47	35	37	35	219
Agosto	33	98	39	45	37	221
Settembre	32	89	28	111		
Ottobre	25	111	24	25		
Novembre	17	91	17	152		
Dicembre	12	6	12	43		
media	24,3	102,8	24,8	69,3		136,6
totale		1.234		831		1.093

Tabella 5 - Temperature massime (C°) e pioggia (mm) registrati nel comune di Gazzo Veronese tra Gennaio 2016 e Settembre 2018. I dati sono stati ricavati dall'archivio dei dati storici di 3B Meteo (vedi sitografia).

SITOGRAFIA

Anno 2016

Gennaio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201601
Febbraio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201602
Marzo: www.3bmeteo.com/meteo/gazzo+veronese/storico/201603
Aprile: www.3bmeteo.com/meteo/gazzo+veronese/storico/201604
Maggio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201605
Giugno: www.3bmeteo.com/meteo/gazzo+veronese/storico/201606
Luglio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201607
Agosto: www.3bmeteo.com/meteo/gazzo+veronese/storico/201608
Settembre: www.3bmeteo.com/meteo/gazzo+veronese/storico/201610
Novembre: www.3bmeteo.com/meteo/gazzo+veronese/storico/201611
Dicembre: www.3bmeteo.com/meteo/gazzo+veronese/storico/201611

Anno 2017

Gennaio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201701 Febbraio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201702 Marzo: www.3bmeteo.com/meteo/gazzo+veronese/storico/201703 Aprile: www.3bmeteo.com/meteo/gazzo+veronese/storico/201704
Maggio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201705
Giugno: www.3bmeteo.com/meteo/gazzo+veronese/storico/201706
Luglio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201707
Agosto: www.3bmeteo.com/meteo/gazzo+veronese/storico/201708
Settembre: www.3bmeteo.com/meteo/gazzo+veronese/storico/201709
Ottobre: www.3bmeteo.com/meteo/gazzo+veronese/storico/201710
Novembre: www.3bmeteo.com/meteo/gazzo+veronese/storico/201711
Dicembre: www.3bmeteo.com/meteo/gazzo+veronese/storico/201712

Anno 2018

Gennaio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201801 Febbraio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201802 Marzo: www.3bmeteo.com/meteo/gazzo+veronese/storico/201803 Aprile: www.3bmeteo.com/meteo/gazzo+veronese/storico/201804 Maggio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201805 Giugno: www.3bmeteo.com/meteo/gazzo+veronese/storico/201806 Luglio: www.3bmeteo.com/meteo/gazzo+veronese/storico/201807 Agosto: www.3bmeteo.com/meteo/gazzo+veronese/storico/201808

REPORT SULLA QUANTITÀ DI CARBONIO FISSATO

grazie alla presenza delle piantagioni policicliche permanenti

di Lucio Montecchio PAN Srl Spin-off dell'Università degli Studi di Padova Il presente studio è stato eseguito presso il Comune di Gazzo Veronese (VR) (Latitudine 45°7'N, Longitudine 11°5'E) in un sito sperimentale gestito dal Consorzio di Bonifica Veronese e coltivato con piantagioni policicliche permanenti destinate alla produzione di legname. Il percorso progettuale svolto da PAN - De Rebus Plantarum si è articolato in due fasi consecutive:

- la prima, effettuata tra la fine dell'inverno e l'inizio della primavera 2015;
- la seconda ad inizio autunno 2017.

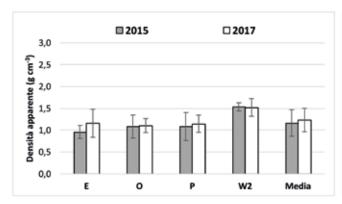
Sono stati scelti quattro siti di monitoraggio (E, O, P, W2) (Figura 1), in ognuno dei quali sono stati individuati quattro punti di rilievo le cui coordinate geografiche sono state georeferenziate mediante GPS. In ogni punto di rilievo, è stata monitorata l'evoluzione temporale della densità apparente e del contenuto di **sostanza organica del suolo** a due differenti profondità: 0-30 cm e 30-60 cm, come rappresentazione rispettivamente dello strato di suolo arabile e di quello sottostante. La densità apparente è stata determinata con il metodo del campione indisturbato mediante l'ausilio i appositi cilindretti di dimensioni standard (diametro 8 cm, altezza 5 cm). Il contenuto di sostanza organica (S.o.) è stato invece de-

Figura 1 - Rappresentazione schematica dei siti di studio (a sinistra) e dei punti di campionamento in ciascun sito (a destra).

terminato con la seguente equazione: S.o. (g kg^{-1}) = C.o. (g kg^{-1}) / 0.58 dove

- C.o.: contenuto di carbonio organico del suolo, ottenuto mediante il metodo Walkley-Black;
- 0.58: il contenuto di carbonio organico nella sostanza organica è stimato pari al 58%.

Sia nello strato arabile (0-30 cm) che in quello sottostante (30-60 cm), la densità apparente differiva tra i diversi siti di campionamento, assumendo in genere i valori più bassi nello strato superiore (mediamente 1,17 g cm⁻³ nel 2015 e 1,23 g cm⁻³ nel 2017) e quelli più elevati nello strato inferiore (mediamente 1,24 g cm⁻³ nel 2015 e 1.43 g cm⁻³ nel 2017).


In tutti i siti di campionamento, la densità apparente del suolo è aumentata nel corso del tempo, ad eccezione che nel sito W2 dove è rimasta pressoché invariata (valori medi di 1,53 g cm⁻³ nel profilo 0-30 cm e 1,63 g cm⁻³ nel profilo 30-60 cm) (Figura 2).

Nel primo periodo di monitoraggio, il contenuto di sostanza organica del suolo mostrava una elevata variabilità sia tra i diversi siti di campionamento sia all'interno di ciascun sito.

La stessa situazione è stata registrata nel secondo periodo di monitoraggio quando però il contenuto di sostanza organica rilevato in entrambi i profili considerati è aumentato rispetto al periodo precedente (mediamente +5,20% nel profilo 0-30 cm, +13,42% nel

profilo 30-60 cm) (Figura 3). Nel sito di sperimentazione, un ettaro di suolo destinato a piantagioni policicliche permanenti conteneva (nel 2015) mediamente 554,06 Mg ha¹¹ di CO₂ (151,27 Mg ha¹¹ di carbonio organico) nello strato arabile (0-30 cm) e 516,32 Mg ha¹¹ di CO₂ (140,96 Mg ha¹¹ di carbonio organico) nello strato sottostante (30-60 cm). Nel corso del tempo (nel 2017), le quantità di CO₂ sequestrate nel suolo aumentavano come conseguenza dell'accumulo di carbonio organico, raggiungendo valori di 647,27 Mg ha¹¹ di CO₂ nel profilo 0-30 cm (176,71 Mg ha¹¹ di carbonio organico) e 628,87 Mg ha¹¹ di CO₂ nel profilo 30-60 cm (171,69 Mg ha¹¹ di carbonio organico). Da un punto di vista agronomico-ambientale, i risultati ottenuti hanno evidenziato che:

- a seguito della realizzazione delle piantagiomi policicliche permanenti, la densità apparente del suolo tende ad aumentare, anche se limitatamente, nel corso del tempo, come conseguenza della ridotta lavorazione del suolo e del compattamento provocato dal transito delle macchine agricole per la manutenzione (sfalcio dell'erba, potature);
- similmente, il contenuto di sostanza organica del suolo tende ad incrementare come conseguenza dell'accumulo di materiale vegetale in via di decomposizione, promuovendo dunque l'accumulo di CO₂ e perciò riducendone indirettamente le emissioni in atmosfera.

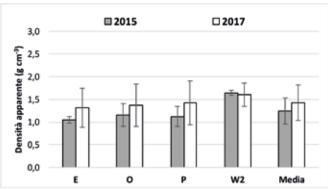
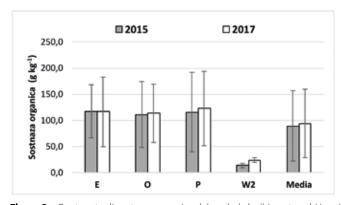
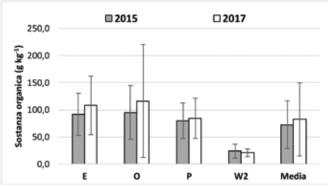




Figura 2 - Densità apparente del suolo (g cm⁻³) in entrambi i periodi di campionamento (2015 e 2017): profilo 0-30 cm (a sinistra), profilo 30-60 cm (a destra). Gli istogrammi indicano il valore medio, le barre la deviazione standard.

Figura 3 - Contenuto di sostanza organica del suolo (g kg¹) in entrambi i periodi di campionamento (2015 e 2017): profilo 0-30 cm (a sinistra), profilo 30-60 cm (a destra). Gli istogrammi indicano il valore medio, le barre la deviazione standard.

L'INDICE DI QUALITÀ NELLE PIANTAGIONI 3P DEL LIFE+ INBIOWOOD

valutazione in fase di qualificazione

di Enrico Buresti Lattes

AALSEA

e Paolo Mori

Compagnia delle Foreste

Cos'è l'indice di qualità

L'Indice di qualità (IQ) è un numero assoluto, compreso tra 0 e 100, che mostra in che misura una piantagione si sta sviluppando nei tempi e con le caratteristiche attese. Di seguito si esporrà prima la metodologia di calcolo dell'IQ per le piantagioni in fase di qualificazione e successivamente i valori di IQ registrati nelle Piantagioni Policicliche Potenzialmente Permanenti (Piantagioni 3P), a pieno campo e in filare, realizzate grazie al LIFE+ InBioWood (LIFE12 ENV/IT/000153).

Da cosa dipende la qualità di una piantagione

La qualità di una piantagione per la produzione di legname di pregio è data dalla qualità delle piante principali che la compongono. A sua volta la qualità di ogni pianta principale dipende dalla **rapidità di accrescimento** (in seguito indicata con "vigore") e dalle caratteristiche estetico-tecnologiche del suo futuro tronco da lavoro (in seguito indicato con "forma") (Buresti Lattes e Mori 2009b). Il valore dell'IQ, in relazione a ciascuna specie arborea, sarà tanto maggiore quanto più ci si avvicinerà al massimo del suo potenziale di crescita e alle caratteristiche estetico-dimensionali richieste per le destinazioni d'uso meglio remunerate.

Quanto più si è distanti dalla fine del ciclo produttivo, tanto più aumenta la possibilità che le caratteristiche di vigore e forma possano variare in seguito a perturbazioni biotiche, abiotiche o a interventi colturali. Questo è il caso delle Piantagioni 3P realizzate nell'ambito del LIFE+ InBioWood dove, nel 2017, l'IQ è stato rilevato in piantagioni realizzate tra 2015 e 2016, cioè di età compresa tra 2 e 3 anni.

Se si calcola l'IQ quando le piante principali sono in fase di qualificazione, cioè nei primi anni d'impianto, è quindi facile che da quel momento alla fine del ciclo produttivo possano intervenire fattori esterni a modificare le caratteristiche delle piante. In altre parole l'IQ della fase di qualificazione potrebbe essere molto diverso da quello finale.

Alla luce di quanto appena affermato, apparentemente non sembrerebbe avere molta utilità calcolare l'IQ in fase di qualificazione. Risulta invece utile poiché nel calcolo dell'IQ non è solo il valore finale che conta, ma assumono significato di indicazione colturale anche i dati e le elaborazioni necessarie a calcolare l'Indice.

Infatti la procedura di calcolo e l'analisi delle tabelle che permettono di giungere a ricavare l'IO consentono di stabilire:

- stabilire se l'impianto si sta sviluppando secondo le attese;
- stabilire se, per recuperare l'impianto e per far aumentare il valore dell'IQ, è possibile intervenire sulla forma, sul vigore o su entrambi;

Man mano che ci si allontana dal momento della messa a dimora la possibilità che le piante possano reagire alle cure colturali diminuisce. Finita la fase di qualificazione, inoltre, non è più possibile intervenire per migliorare la forma, ma si può puntare solo a mantenere il massimo vigore fino alla fine del ciclo produttivo. Ecco quindi che avere un IQ, per quanto precoce, può essere utile ad avere prime indicazioni su come procedere nella gestione della fase di qualificazione in atto per migliorare la qualità dell'impianto.

Quante piante si devono misurare

L'ideale, in un qualsiasi impianto, sarebbe attribuire a tutte le piante principali, potenzialmente principali e, se presenti, con doppio ruolo, una categoria di forma e vigore. Considerare tutte i soggetti che potranno produrre reddito può essere fatto nel caso di impianti molto piccoli. Per gli impianti di maggiori dimensioni è necessario dimensionare e individuare un campione di piante su cui stimare vigore e forma.

Prima di iniziare la valutazione e scegliere il numero di piante da considerare si dovrà verificare se l'impianto è:

- · omogeneo;
- disomogeneo per due o più aree di una significativa estensione (> 3.000 m²). A questo proposito per convenzione si è stabilito di considerare disomogenee due aree dell'impianto quando la differenza in diametro e/o in altezza delle piante al loro interno supera il 50%.

Nel primo caso, **impianto omogeneo**, sarà sufficiente valutare 30 piante principali per ogni specie ogni 3 ettari d'impianto o frazioni di tale superficie fino ad un massimo di 90 piante. Tale numero è considerato il minimo di campionamento statistico per essere considerato "grande campione". Si potranno considerare meno piante solo in caso l'impianto in esame sia di piccole dimensioni e non presenti più di 30 piante principali, potenzialmente principali o con doppio ruolo.

Nel secondo caso, quello dell'**impianto con aree a differente ritmo di accrescimento**, si dovrà seguire lo stesso metodo, ma riferendosi separatamente ad ogni area omogenea.

In impianti superiori a 3 ha di estensione, gli elementi del campione vanno presi in gruppi di 30, situati in parti diverse ma rappresentative dell'area omogenea, seguendo una o più file contigue e interne alla piantagione (escluse quindi quelle di margine) fino al raggiungimento del numero minimo necessario. Nelle file che verranno percorse per il rilievo dovranno essere conteggiate anche le piante morte o mancanti della specie considerata.

Per le piantagioni in filari, per convenzione, si è prudenzialmente considerato che la larghezza della fascia di terreno occupata dalle chiome delle piante adulte fosse di 3 m per lato (6 m la larghezza complessiva della fascia). A queste condizioni servono 1.666,6 m di filare per ottenere il corrispettivo di 1 ha, mentre con 5000 m di filare si copre la stessa superficie di 3 ha. Ciò significa che, in caso di piantagioni lineari, il numero minimo di piante da considerare per il campione è di 30 ogni 5 km o frazioni fino ad un massimo di 90. Si sottolinea che fino a qui si è trattato di numeri minimi da rilevare, ma è chiaro che un campione più ampio, o il rilievo di tutte le piante (in impianti di piccola superficie), può portare ad una valutazione dell'IQ più accurata.

Esempi di dimensionamento del campione: Impianto a pieno campo

- 1. impianto puro di farnia di 1,5 ettari => si valutano 30 piante farnia;
- 2. impianto puro di farnia di 2,5 ettari con 2 distinte aree omogenee => si valutano 30 piante di farnia per ogni area omogenea;
- 3. impianto puro di farnia di 3,8 ettari => si valutano 60 piante di farnia:
- 4. impianto misto di farnia e ciliegio di 2,5 ettari => si valutano 30 piante di farnia e 30 di ciliegio;
- 5. Impianto misto di farnia e ciliegio di 4,5 ettari => si valutano 60 piante di farnia e 60 di ciliegio.

Impianto in filare

- 6. impianto puro di farnia di 1,5 km => si valutano 30 piante farnia:
- 7. impianto puro di farnia di 3,5 km con 2 distinte aree omogenee => si valutano 30 piante di farnia per ogni area omogenea;
- 8. impianto puro di farnia di 5,8 km => si valutano 60 piante di farnia;
- 9. impianto misto di farnia e pioppo di 2,5 km => si valutano 30 piante di farnia e 30 di ciliegio;
- 10. Impianto misto di farnia e pioppo di 7,5 km => si valutano 60 piante di farnia e 60 di ciliegio.

Come valutare la vigoria

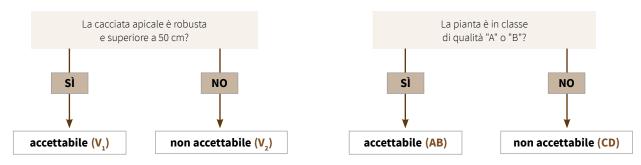
Il vigore di ogni pianta si valuta prendendo in considerazione sia la lunghezza che la robustezza delle cacciate. Più lunghe e robuste sono le cacciate e più vigorosa può essere considerata la pianta. Per convenzione, indipendentemente dalla specie in esame, quando almeno una delle cacciate apicali supera i 50 cm di lunghezza, la pianta può essere considerata sufficientemente vigorosa e il suo apparato radicale ben insediato nel terreno. Per le piante a ciclo breve e brevissimo si considerano vigorose cacciate più lunghe di 100 cm.

Come valutare la forma

Si tratta di una valutazione precoce del "potenziale delle piante", che data la giovane età dei soggetti in fase di qualificazione, può variare nel tempo sia negativamente che positivamente a causa di fenomeni naturali o dell'esecuzione di adeguate cure colturali (es. potature).

Nell'eseguire la valutazione è necessario individuare gli indizi che permettono di ipotizzare la miglior classe di qualità che potrà essere attribuita ai potenziali tronchi alla fine del ciclo produttivo. In generale la qualità complessiva, di uno stesso impianto, in fase di dimensionamento sarà inferiore o al massimo uguale a quella presente al momento della valutazione alla conclusione della fase di qualificazione.

Per procedere alla classificazione delle singole piante in funzione della forma si segue la chiave dicotomica riportata nello Schema 1.


Come classificare le piante ai fini della valutazione dell'impianto

Per facilitarsi il lavoro è sufficiente che si seguano contemporaneamente entrambi i percorsi individuati dalle due domande del successivo schema logico di valutazione (Schema 2). Nella pratica il tecnico, a partire dallo schema 2, riporterà su un "piedilista" (Figura 1), per ogni pianta principale e per ogni specie, una lettera per il vigore e una coppia di lettere per la forma. L'abbinamento delle lettere consentirà quindi di classificare ciascuna pianta per vigore e forma. Le quattro categorie in cui possoo essere classificate le piante sono quindi:

SCHEMA 1 - CLASSIFICAZIONE DEI FUSTI IN FASE DI QUALIFICAZIONE

La pianta presenta: 1. Apice danneggiato sotto i 250 cm di altezza; 2. Un diametro del futuro tronco > 10 cm con rami verdi e/o cicatrici non rimarginate⁽¹⁾ 3. Brusca riduzione di diametro sotto i 250 cm di altezza in corrispondenza di rami (Collo di bottiglia); 4. Fusto fortemente curvato con scostamento >10% (vedi appendice G) 5. Fusto deviato secondo 2 o più assi; 6. Fusto inclinato > 20% 7. Ferite da fauna o da mezzi meccanici Se la risposta ad una o più domande fosse "sì" la pianta dovrà essere classificata in classe C o D 10 Il diametro del fusto va considerato nel punto in cui si inserisce il ramo o in cui si presenta la cicatrice non rimarginata. Classe C D Classe C D

SCHEMA 2 - FASI DI QUALIFICAZIONE

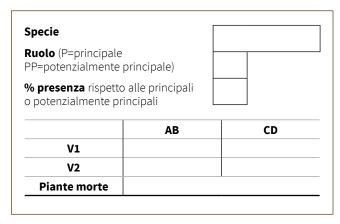


Figura 1 - Piedilista per il rilievo in campo.

- Categoria "V1+AB"=> piante vigorose e con buona forma;
- Categoria "V1+CD"=> piante vigorose ma con forma non idonea alla produzione degli assortimenti desiderati.
- Categoria "V2+AB"=> piante poco vigorose ma con forma idonea alla produzione degli assortimenti desiderati.
- Categoria "V2+CD"=> piante vigorose e con forma non idonea alla produzione degli assortimenti desiderati.

Calcolo dell'IQ delle piante principali, potenzialmente principali o con doppio ruolo di ogni specie

Generalmente nelle piantagioni da legno si trovano rappresentate contemporaneamente più categorie di vigore e forma. La valutazione dell'IQ delle piante principali, potenzialmente principali o con doppio ruolo di ogni specie dipende direttamente dalla consistenza percentuale di ciascuna categoria di vigore e forma all'interno dello schema d'impianto. Questa non è costante nel tempo, ma può variare per il verificarsi di eventi avversi o per la realizzazione di idonee cure colturali che possono influire proprio sul vigore e/o sulla forma. Quando si valutano le piante, soprattutto in fase di qualificazione, si ottiene quindi un dato che ha una valenza temporale limitata. Per questo è utile ripetere nel tempo la valutazione dell'IQ in modo da monitorare la rispondenza tra obiettivi stabiliti in fase progettuale e reale andamento dell'impianto.

Le condizioni di vigore e forma delle piante di una specie che hanno ruolo di principale, potenzialmente principale o con doppio ruolo, possono essere sintetizzate con un "Indice di Qualità". Tale indice si ottiene con due semplici operazioni successive:

 si moltiplica la consistenza percentuale di ciascuna categoria (o combinazione di vigore e forma) per una costante relativa alla categoria stessa (Tabella 1). Nel calcolo della consistenza percentuale di ciascuna delle 4 categorie di vigore e qualità si deve tenere conto anche del numero di piante morte della specie considerata (categoria a parte che porta 0 punti, ma incide percentualmente sul successo della piantagione);

- 2. per ottenere l'Indice di Qualità (IQ) delle piante principali, potenzialmente principali o con doppio ruolo di una determinata specie, si sommano i punteggi ottenuti da ciascuna categoria.
- 3. In altri termini per calcolare l'IQ della specie si applica la seguente formula:

 $IQ = ((\% \text{ "V1+AB"}) \times 1) + ((\% \text{ "V1+CD"}) \times 0,3) + ((\% \text{ "V2+AB"}) \times 0,3) + ((\% \text{ "V2+CD"}) \times 0) + (\% \text{ "piante morte"} \times 0)$

Il valore dell'IQ è un numero intero. In caso il calcolo portasse a risultati con numeri decimali il valore deve essere arrotondato, per difetto, al numero intero.

A seconda del valore dell'IQ l'impianto potrà essere inserito in una classe di qualità (Tabella 2).

	AB	CD
V1	1	0,3
V2	0,3	0
Piante morte		0

 $\textbf{Tabella 1} \ - \ \text{Moltiplicatori} \ \text{costanti} \ \text{da utilizzare per ciascuna categoria di vigore e forma}.$

IQ	Classe di qualità
0-20	Pessima
21-40	Insufficiente
41-60	Sufficiente
61-80	Buona
81-100	Ottima

Tabella 2 - Valori di IQ e classi di qualità.

Calcolo dell'IQ dell'impianto

Il calcolo dell'Indice di Qualità delle piantagioni da legno dipende dalla tipologia d'impianto.

Generalmente ci si può trovare di fronte a tre casi distinti: gli impianti puri (o puri con accessorie), gli impianti misti (o misti con accessorie) che possono essere monociclici o policiclici. Nel caso del LIFE+ InBioWood si tratta di impianti misti realizzati sotto forma di Piantagioni 3P.

Per gli impianti puri l'IQ dell'impianto è uguale all'IQ delle piante principali dell'unica specie che li compongono.

Per gli impianti misti invece l'indice di qualità dell'impianto deve tenere conto del valore dell'IQ delle piante principali, potenzialmente principali o con doppio ruolo di **tutte le specie** che lo compongono e del **peso percentuale** di ciascuna di esse. Nell'esempio 2 (vedi Box 1) l'impianto è misto per cui l'IQ dell'impianto è calcolato come di seguito:

 $((IQ noce \times \%noce) + (IQ ciliegio \times \%ciliegio)) / 100 = ((80 \times 50) + (68 \times 50)) / 100 = 74$

Confrontando questo valore con quelli riportati in Tabella 2 si ricava che l'impianto rientra nella classe di qualità "buona".

Criteri adottati per il dimensionamento del campione nelle piantagioni LIFE+ InBioWood

Nelle Piantagioni 3P realizzate con il LIFE+ InBioWood si è applicato il sistema di calcolo dell'IQ per le piantagioni miste. Nella valutazione dell'IQ si sono considerati separatamente gli impianti a pieno campo da quelli in filare. I rilievi, effettuati alla fine del 2017 con le piantagioni in riposo vegetativo, hanno riguardato piantagioni a pieno campo di 3 e 4 anni e piantagioni in filare (o lineari) di 2 e 3 anni

BOX 1 - ESEMPI DI CALCOLO DELL'INDICE DI QUALITÀ Esempio 2

Superficie impianto => 2,5 ha

Piante principali => 50% di noce e 50% di ciliegio

Distanza fra le piante principali => 10 m

Numero piante monitorate per 2,5 ha => 60 di cui 30 di noce e 30 di ciliegio

Calcolo dell'IQ delle piante principali di **noce** $IQ = (73.3 \times 1) + (23.3 \times 0.3) + (0 \times 0.3) + (0 \times 0) = 80$

Confrontando il valore di IQ con i valori della Tabella 2 si ricava l'IQ delle piante principali di noce rientra nella classe di qualità "Buona".

Categoria di vigore e forma	Numero Piante	Consistenza percentuale della categoria	Costante della categoria	Punteggio assegnato ad ogni categoria
V ₁ + AB	22	73,3	1	73,3
V ₁ + CD	7	23,3	0,3	7,0
V ₂ + AB	0	0,0	0,3	0,0
V ₂ + CD	0	0,0	0	0,0
Piante morte	1	3,3	0	0,0

Elementi necessari al calcolo dell'IQ dell'esempio 2 per il noce.

Categoria di vigore e forma	Numero Piante	Consistenza percentuale della categoria	Costante della categoria	Punteggio assegnato ad ogni categoria
V ₁ + AB	18	60,0	1	60,0
V ₁ + CD	8	26,7	0,3	8,0
V ₂ + AB	0	0,0	0,3	0,0
V ₂ + CD	0	0,0	0	0,0
Piante morte	4	13,3	0	0,0

Elementi necessari al calcolo dell'IQ dell'esempio 2 per il ciliegio.

Calcolo dell'IQ delle piante principali di cilie	gio
$IQ = (60 \times 1) + (26,7 \times 0,3) + (0 \times 0,3) + (0 \times 0) = 0$	68

Confrontando il valore di IQ con i valori della Tabella 2 si ricava l'IQ delle piante principali di ciliegio rientra nella classe di qualità "Buona".

Considerata la giovane età delle piantagioni, le distanze d'impianto e la competizione inter ed intraspecifica praticamente nulla in questa fase di sviluppo, si è scelto di valutare l'IQ tenendo conto delle piante appartenenti a ciascun ciclo produttivo, indipendentemente dallo schema d'impianto di cui fanno parte.

La proporzione tra le varie combinazioni di cicli produttivi nelle piantagioni dimostrative del LIFE+ InBioWood, sia per le piantagioni a pieno campo che per quelle in filari, è la seguente:

- 50-60% della superficie con piante a ciclo medio-lungo (CML), piante a ciclo breve (CB) e piante a ciclo brevissimo (CBB);
- 20-30% della superficie con piante a ciclo medio-lungo (CML) e piante a ciclo breve (CB);
- 10-15% della superficie con piante a ciclo medio-lungo (CML) e piante a ciclo brevissimo (CBB);
- 10-15% della superficie con piante a ciclo breve (CB) e piante a ciclo brevissimo (CBB);

Tenuto conto di quanto sopra si è considerato che complessivamente le superfici dedicate ai singoli cicli produttivi fossero simili. Per tale motivo, nel calcolo dell'IQ, si è attribuito un peso 33,3% al CML al CB e al CBB.

Il numero minimo di piante da rilevare per ciascun ciclo produtti-

vo, tenendo conto della superficie complessiva delle piantagioni a pieno campo e di quelle lineari è 90. Per ottenere una valutazione più precisa dell'IQ si è stabilito di fare riferimento a 120 piante per ciclo produttivo, sia nel caso delle piantagioni a pieno campo, sia in quello delle piantagioni in filari.

I valori di IQ rilevati nelle piantagioni 3P del LIFE+ InBioWood

Impianti a pieno campo

Di seguito sono mostrati i piedilista di rilievo (Tabelle 3, 5 e 7) e i valori dell'Indice di Qualità (Tabelle 4, 6 e 8) per ciascuno dei tre cicli produttivi presenti nelle Piantagioni 3P a pieno campo realizzate nell'ambito del LIFE+ InBioWood. In Tabella 9 è riportato invece l'IQ relativo ai 25 ha di Piantagioni 3 P a pieno campo.

Impianti in filare

Di seguito sono mostrati i piedilista di rilievo (Tabelle 10, 12 e 14) e i valori dell'Indice di Qualità (Tabelle 11, 13 e 15) per ciascuno dei tre cicli produttivi presenti nelle Piantagioni 3P a pieno campo realizzate nell'ambito del LIFE+ InBioWood. In Tabella 16 è riportato invece l'IQ relativo ai 45 km di Piantagioni 3 P in filare.

tipo ciclo =>	СМL			Peso %	33		
	AB	CD					
V_1	38	12					
V ₂	56	9					
			Totale piante misurate				
Piante morte	5						

Tabella 3 - Piedilista di rilievo delle piante a Ciclo Medio Lungo (CML) collocate in schemi a pieno campo.

tipo ciclo =>	СВ			Peso %	33
	AB	CD			
V_1	78	21			
V ₂	14	4			
			Totale piante	120	
Piante morte	3				

Tabella 5 - Piedilista di rilievo delle piante a Ciclo Breve (CB) collocate in schemi a pieno campo.

IQ

			Classe AB		Classe CD					
Categoria di vigore e forma	Piante morte	Numero piante	%	Costanti di categoria	Numero piante	%	Costanti di categoria	Peso % del vigore	Punteggio assegnato ad ogni categoria	
V_1	///	38	31,7	1,00	12	10,0	0,30	41,7	34,7	1
V ₂	///	56	46,7	0,30	9	7,5	0,00	54,2	14,0	
Piante morte	5							4,2	0,0]
Totale	5	94	78,33		21	17,5		100,0	48,0	10

Tabella 4 - Calcolo dell'IQ delle piante a Ciclo Medio Lungo (CML) collocate in schemi a pieno campo.

			Classe AB			Classe CD			
Categoria di vigore e forma	Piante morte	Numero piante	%	Costanti di categoria	Numero piante	%	Costanti di categoria	Peso% del vigore	Punteggio assegnato ad ogni categoria
V ₁	///	78	65,0	1,00	21	17,5	0,30	82,5	70,3
V ₂	///	14	11,7	0,30	4	3,3	0,00	15,0	3,5
Piante morte	3							2,5	0,0
Totale	3	92	76,67		25	20,83		100,0	73,0

Tabella 6 - Calcolo dell'IQ delle piante a Ciclo Medio Lungo (CML) collocate in schemi a pieno campo.

tipo ciclo =>	СВВ			Peso %	33			
	AB	CD						
V_1	51							
V ₂	57							
			Totale piante misurate					
Piante morte	12							

Tabella 7 - Piedilista di rilievo delle piante a Ciclo Brevissimo (CBB) collo	cate
in schemi a pieno campo.	

Tipo di ciclo produttivo	Peso %	IQ ciclo produttivo	IQ Piantagione
CML	33	48	
СВ	33	73	
СВВ	33	56	
	100		58

Tabella 9 - Calcolo dell'iQ dell'intera Piantagione 3P a pieno campo, ottenuto come media ponderata dell'IQ dei tre cicli produttivi presenti.

			Classe AB		Classe CD					
Categoria di vigore e forma	Piante morte	Numero piante	%	Costanti di categoria	Numero piante	%	Costanti di categoria	Peso % del vigore	Punteggio assegnato ad ogni categoria	
V_1	///	51	42,5	1,00	0	0,0	0,30	42,5	42,5	
V ₂	///	57	47,5	0,30	0	0,0	0,00	47,5	14,3	
Piante morte	12							10,0	0,0	
Totale	12	108	90		0	0		100,0	56,0	I

Tabella 8 - Calcolo dell'IQ delle piante a Ciclo Brevissimo (CBB) collocate in schemi a pieno campo.

tipo ciclo =>	СМL			Peso %	33		
	AB	CD					
V_1	48	5					
V ₂	58	6					
			Totale piante misurate				
Piante morte	3						

Tabella 10 - Piedilista di rilievo delle piante a Ciclo Medio Lungo (CML) collocate in schemi in filare.

tipo ciclo =>	СВ		Peso %	33				
	AB	CD						
V_1	89	15						
V ₂	10	4						
			Totale piante misurate					
Piante morte	2							

 $\textbf{Tabella 12} \ - \ \text{Piedilista di rilievo delle piante a Ciclo Breve (CB) collocate in schemi in filare.}$

			Classe AB			Classe CD			
Categoria di vigore e forma	Piante morte	Numero piante	%	Costanti di categoria	Numero piante	%	Costanti di categoria	Peso % del vigore	Punteggio assegnato ad ogni categoria
V_1	///	48	40,0	1,00	5	4,2	0,30	44,2	41,3
V ₂	///	58	48,3	0,30	6	5,0	0,00	53,3	14,5
Piante morte	3							2,5	0,0
Totale	3	106	88,33		11	9,167		100,0	55,0

 Tabella 11 - Calcolo dell'IQ delle piante a Ciclo Medio Lungo (CML) collocate in schemi in filare.

Considerazioni sui risultati

Prima di proporre le considerazioni finali sul valore di IQ che può essere attribuito alle Piantagioni 3P, a pieno campo e in filare, realizzate con il Progetto LIFE+ InBioWood è utile analizzare brevemente le tabelle di calcolo dei singoli cicli produttivi. In questo modo, infatti, oltre ad avere un numero, l'IQ, che in estrema sintesi esprime la rispondenza tra obiettivi progettuali e reale andamento dell'impianto, si traggono indicazioni utili alla gestione.

Analizzando i valori dei singoli cicli produttivi nelle **piantagioni a pieno campo**, si ricava che la Tabella 4, Ciclo Medio Lungo (**CML**), mostra come il 78,3% delle piante abbiano una buona forma ed abbiano ancora la potenzialità di poter essere inserite, a fine ciclo

produttivo, nelle classi di qualità estetico-tecnologica A o B. Ciò è indice di interventi di potatura eseguiti in maniera corretta fino al momento della valutazione. Il valore del vigore mostra che il 41,7% delle piantine ha superato lo stress da trapianto, mentre per la maggior parte del 54,2 % delle piante poste in classe di vigore V2, data la giovanissima età delle piantagioni, c'è da aspettarsi a breve un passaggio nella V1. Il 4,2% di piante morte rientra nella normalità di piantagioni realizzate e condotte con sufficiente professionalità.

Dalla Tabella 6, che si riferisce al Ciclo Breve (**CB**), si ricava che il 76,7% delle piante è ancora potenzialmente classificabile nelle classi di qualità estetico-tecnologica A o B e che oltre l'82% dei

			Classe AB			Classe CD				
Categoria di vigore e forma	Piante morte	Numero piante	%	Costanti di categoria	Numero piante	%	Costanti di categoria	Peso% del vigore	Punteggio assegnato ad ogni categoria	
V_1	///	89	74,2	1,00	15	12,5	0,30	86,7	77,9]
V ₂	///	10	8,3	0,30	4	3,3	0,00	11,7	2,5]
Piante morte	2							1,7	0,0	
Totale	2	99	82,5		19	15,83		100,0	80,0	K

Tabella 13 - Calcolo dell'IQ delle piante a Ciclo Medio Lungo (CML) collocate in schemi in filare.

tipo ciclo =>	СВ		Peso %	33
	AB	CD		
V_1	65			
V ₂	51			
			Totale piante misurate	120
Piante morte	4			

Tabella 14 -	Piedilista di rilievo	o delle piante a	Ciclo Brevissimo	(CBB) collo-
cate in schem				

Tipo di ciclo produttivo	Peso %	IQ ciclo produttivo	IQ Piantagione
CML	33	55	
СВ	33	80	
CBB	33	66	
	100		66

Tabella 16 - Calcolo dell'IQ dell'intera Piantagione 3P in filare (45 km), ottenuto come media ponderata dell'IQ dei tre cicli produttivi presenti.

			Classe AB			Classe CD			
Categoria di vigore e forma	Piante morte	Numero piante	%	Costanti di categoria	Numero piante	%	Costanti di categoria	Peso % del vigore	Punteggio assegnato ad ogni categoria
V_1	///	65	54,2	1,00	0	0,0	0,30	54,2	54,2
V ₂	///	51	42,5	0,30	0	0,0	0,00	42,5	12,8
Piante morte	4							3,3	0,0
Totale	4	116	96,67		0	0		100,0	66,0

 Tabella 15 - Calcolo dell'IQ delle piante a Ciclo Brevissimo (CBB) collocate in schemi in filare.

soggetti è in classe di vigore V1. Il 2,5% di piante morte (in realtà già sostituite dal gestore) rappresenta un valore compatibile con quello ordinariamente registrato per le piantagioni tradizionali composte solo da pioppi.

La Tabella 8, riferendosi al Ciclo Brevissimo (**CBB**), con il quale si intende produrre solo biomassa legnosa, non contiene informazioni relative alla classe di qualità. Per omogeneità rispetto alle altre tabelle si sono effettuati i calcoli dell'IQ del ciclo produttivo inserendo i dati del piedilista nella prima colonna (Classe AB), anche se per questo tipo di assortimenti si considera soltanto il vigore. A tal proposito in Tabella 8 si può notare come il 47,5% dei soggetti esaminati si trovi in classe di vigore V2 e il 10% delle piantine siano morte (poi prontamente sostituite dal gestore). Tali valori indicano una certa difficoltà di attecchimento delle piante destinate a produrre biomassa attraverso un ciclo brevissimo (5-7 anni), tuttavia data la giovane età della piantagione c'è da aspettarsi a breve che, una volta ben insediato l'apparato radicale, una parte consistente delle piante in classe V2 passi alla classe V1, insieme a quelle inserite in sostituzione di quelle morte.

Nel complesso le piantagioni a pieno campo hanno un **IQ pari a 58 punti**. Tenendo conto dei parametri riportati in Tabella 2 tale valore fa considerare più che "**sufficiente**" la rispondenza tra quanto progettato e quanto realizzato. La vicinanza di soli 3 punti

alla classe superiore e le variazioni in positivo ancora possibili (ad esempio nella vigoria delle piante di CML e CBB), fanno ipotizzare un possibile passaggio alla classe "buona".

IQ

Analizzando i valori dei singoli cicli produttivi nelle **piantagioni in filare**, si ricava che la Tabella 11, Ciclo Medio Lungo (**CML**), mostra come il 88,3% delle piante abbiano una buona forma ed abbiano ancora la potenzialità di poter essere inserite, a fine ciclo produttivo, nelle classi di qualità estetico-tecnologica A o B. Ciò è indice di interventi di potatura eseguiti in maniera corretta fino al momento della valutazione. Il valore del vigore mostra che il 44,2% delle piantine ha superato lo stress da trapianto, mentre per la maggior parte del 53,3 % delle piante poste in classe di vigore V2, data la giovanissima età delle piantagioni, c'è da aspettarsi a breve un passaggio nella V1. Il 2,5% di piante morte (già sostituite) è positivamente al di sotto di quanto avviene normalmente in piantagioni realizzate e condotte con sufficiente professionalità.

Dalla Tabella 13, che si riferisce al Ciclo Breve (**CB**), si ricava che il 82,5% delle piante è ancora potenzialmente classificabile nelle classi di qualità estetico-tecnologica A o B e che oltre l'86,7% dei soggetti è in classe di vigore V1. L'1,6% di piante morte rappresenta un valore compatibile con quello ordinariamente registrato per le piantagioni tradizionali composte solo da pioppi.

La Tabella 15, come per quanto considerato a proposito delle piantagioni a pieno campo, riferendosi al Ciclo Brevissimo (CBB), non contiene informazioni relative alla classe di qualità. Per omogeneità rispetto alle altre tabelle si sono effettuati i calcoli dell'IQ del ciclo produttivo inserendo i dati del piedilista nella prima colonna (Classe AB), anche se per questo tipo di assortimenti si considera soltanto il vigore. A tal proposito in Tabella 15 si può notare come il 54,2% dei soggetti esaminati si trovi in classe di vigore V2 e solo il 3,3% delle piantine siano morte (già sostituite dal gestore).

Il valore del 42,5% di piante in classe di vigore V2 non deve preoccupare, data la giovane età dell'impianto c'è da aspettarsi a breve che, una volta ben insediato l'apparato radicale, una parte consistente delle piante in classe V2 passi alla classe V1.

Nel complesso le piantagioni in filari hanno un **IQ pari a 66 punti**. Tale valore, tenendo conto dei parametri riportati in Tabella 2, fa considerare "**buona**" la rispondenza tra quanto progettato e quanto realizzato.

BIBLIOGRAFIA CONSIGLIATA

Buresti E., Mori P., 2003 - **Valutare le condizioni di sviluppo delle piantagioni da legno.** Sherwood n. 86: 15-21.

Buresti E., Mori P., 2003 - **Progettazione e realizzazione di impianti di arboricoltura da legno.** ARSIA Toscana, 78 pp.

Buresti Lattes E., Mori P., Ravagni S., 2007 - Le piantagioni da legno in provincia di Ferrara: punti di forza e di debolezza. Sherwood n. 130: 31-37.

Buresti Lattes E., Mori P., 2009a - **Valutazione delle piantagioni da legno con latifoglie di pregio.** Regione Piemonte – Direzione Opere Pubbliche e Difesa del Suolo, Economia Montana e Foreste - Settore politiche forestali.

Buresti Lattes E., Mori P., 2009b - **L'indice di qualità per le piante principali.** Sherwood n. 157: 11-15.

Buresti Lattes E., Mori P., 2009c - L'indice di qualità di piantagioni pure: valutazione in fase di dimensionamento. Sherwood n. 157: 17-22.

Canesin C., PMDORI M., 2007a - Arboricoltura da legno in provincia di Gorizia: analisi strutturale degli impianti realizzati con il Reg. CEE 2080/92. Sherwood n. 135: 23-27.

Canesin C., Pindori M., 2007b - Arboricoltura da legno in provincia di Gorizia: caratteristiche e problematiche degli impianti realizzati con il Reg. CEE 2080/92. Sherwood n. 136: 19-22.

MINOTTA G., 2003 - L' arboricoltura da legno: un'attività al servizio dell'ambiente. «Libro bianco» sulle produzioni legnose fuori foresta in Italia. Ed. Avenue Media (BO).

MORI P., BURESTI E., 2002 - Le piantagioni da legno realizzate con il Reg. 2080/92: condizioni di sviluppo e caratteristiche nella provincia di Arezzo. Sherwood n. 80: 15-20.

Cappelli V., Maltoni A., Mariotti B., Montaghi A., Nocentini S., Tani A., Travaglini D., 2009 - Individuazione delle aree vocate all'arboricoltura con specie a legname pregiato in provincia di Firenze. Atti del Terzo Congresso Nazionale di Selvicoltura. Taormina (ME), 16-19 ottobre 2008. Accademia Italiana di Scienze Forestali, Firenze, p. 796-803.

Nosenzo A, Berretti R., Boetto G., 2008 - **Piantagioni da legno: valutazione degli assortimenti ritraibili.** Sherwood n. 145: 15-20.

RAPPORTO SULLE ATTIVITÀ DI RILIEVO

relative a dimensioni e sviluppo delle piante principali nelle Piantagioni 3P I rilievi sull'andamento dell'accrescimento nelle Piantagioni 3P ha riguardato le piante principali a ciclo medio lungo (CML), ciclo breve (CB) e ciclo brevissimo (CBB). I dati sono stati raccolti da 4 soggetti diversi.

- 1. Dipartimento per l'Innovazione nei sistemi Biologici, Agroalimentari e Forestali dell'Università della Tuscia (DIBAF): rilievi con sistema LiDAR montato su drone;
- 2. Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria Centro Foreste e Legno di Arezzo (CREA FL): rilievi con sistema LiDAR terrestre (Terrestrial Laser Scan - TLS)
- 3. Associazione per un Arboricoltura da legno Sostenibile per l'Economia e l'Ambiente (AALSEA) partner del LIFE+ InBioWood: rilievi con sistemi tradizionali;
- 4. Compagnia delle Foreste (Partner InBioWood): rilievi con sistemi tradizionali.

I rilievi hanno riguardato sia le piantagioni realizzate con il LIFE+ InBioWood che piantagioni sperimentali AALSEA più vecchie. Lo scopo è stato quello di verificare se gli accrescimenti dei vari cicli produttivi delle piantagioni LIFE+ InBioWood fossero in linea con quelli di piantagioni sperimentali con caratteristiche simili.

Le piante a CML del LIFE+ InBioWood, che hanno avuto un grado di attecchimento superiore al 95% (vedi rapporto sull'Indice di Qualità (IQ) delle piantagioni 3P del LIFE+ In-BioWood), per le loro caratteristiche si sviluppano poco nei primi anni di vita. Per questo motivo le loro condizioni di crescita non sono state misurate con sistemi laser (LiDAR), ma attraverso sistemi tradizionali per la raccolta di dati per le tabelle numeriche (es. stadia graduata da 4 m) e con una valutazione visiva sintetizzata nel rapporto sull'Indice di Qualità (IQ). La stessa strategia si è adottata per le piante a ciclo brevissimo (CBB).

Di seguito si riportano le relazioni fornite dai soggetti coinvolti nelle misurazioni. Nell'ordine saranno presentati i risultati prodotti da DIBAF, CREA FL e, congiuntamente, dai partner AALSEA e Compagnia delle Foreste. Al termine dell'esposizione sono riportate le considerazioni che è possibile formulare alla luce dei dati raccolti e della giovane età delle piantagioni 3P realizzate con il LIFE+ InBioWood.

REPORT SULL'ANDAMENTO DELL'ACCRESCIMENTO NELLE PIANTAGIONI 3P

Rilievi con sistema LiDAR montato su drone

Dipartimento per l'Innovazione nei sistemi Biologici, Agroalimentari e Forestali dell'Università della Tuscia (DIBAF)

Oggetto dell'incarico

In data 31/05/2017 con Prot. n. 1-9234 il Consorzio di Bonifica Veronese ha conferito l'incarico al Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF) dell'Università degli Studi della Tuscia per lo svolgimento delle attività descritte nella Convenzione di Sovvenzione approvata dalla Commissione Europea con numero "LIFE12 ENV/IT/000153" e sottoscritta in data 04/09/2013.

Il progetto LIFE+ InBioWood mira ad incrementare la biodiversità nelle zone dove risulta semplificata dall'agricoltura intensiva. Tale effetto si può ottenere attraverso la predisposizione di Piantagioni Policicliche Potenzialmente Permanenti (Piantagioni 3P). Si tratta di un nuovo approccio all'arboricoltura che unisce i vantaggi ambientali di una foresta naturale con la redditività propria delle piantagioni di tipo industriale. L'adozione delle Piantagioni 3P consente di incrementare la biodiversità, di migliorare la gestione delle risorse idriche e di ottenere il giusto equilibrio tra vantaggi ambientali e reddito per gli agricoltori.

Con il progetto LIFE+ InBioWood si intende dimostrare come, in termini di reddito, le Piantagioni Policicliche Permanenti, possano essere considerate efficaci sul piano produttivo quanto le tradizionali piantagioni monospecifiche, ma molto più efficienti in termini di erogazione di benefici ambientali. Più precisamente le attività previste dal presente incarico attengono alla AZIONE C1 punto 5: "Misurazione dell'accrescimento delle specie impiegate nelle Piantagioni Policicliche Permanenti".

Localizzazione degli impianti

I rilievi hanno riguardato i seguenti impianti:

Comune di Gazzo Veronese (VR)

- 1. Pieno campo lungo canale Tartaro (3 ha) di anni 2,5 e 3,5 (TARTARO A, B e C)
- 2. Filari ungo fiume Tione (2 km) di anni 1,5 e 2,5 (TIONE A e B)

Comune di Villa Bartolomea (VR)

- 3. Policiclico 3 cicli (1 ha) di anni 5,5 (ALBERTONE A)
- 4. Policiclico 2 cicli (1 ha) di anni 5,5 (ALBERTONE B)

Comune di Viadana (MN)

- 5. Impianto Panguaneta (1,5 ha) di anni 9,5 (PANGUANETA)
- 6. Impianto Punta Valle dell'Oca (0,5 ha) di anni 13,5 (VALLE DELL'OCA A)
- 7. Impianto Ex Viola Valle dell'Oca (1 ha) di anni 13,5 (VALLE DELL'OCA B)
- 8. Impianto Gardini (1 ha) di anni 6.5 (GARDINI)

Modalità di occupazione dello spazio aereo

L'azione consiste nella misurazione degli accrescimenti delle principali specie arboree impiegate nel Progetto InBioWood. Lo scopo è quello di mostrare come le varie specie crescono e occupano lo spazio messo loro a disposizione nei vari tipi di Piantagione 3P. Mediante l'utilizzo della tecnologia LIDAR con sensore montato su drone, è stata richiesta la rilevazione dei seguenti parametri:

- Altezza di inserzione della chioma;
- Area di insidenza della chioma;
- Altezza totale della pianta;
- Altezza della foglia situata più in basso;
- Diametro della chioma lungo il filare;
- Diametro della chioma ortogonalmente al filare;
- Diametro del fusto a 130 cm da terra;
- Profondità della chioma;
- Volume della chioma.

Cronoprogramma delle operazioni

I rilievi LiDAR sono stati eseguiti nella settimana dal 23 al 30 luglio. Insieme al Dr. RICCARDO SALVATI (ricercatore in serivzio presso il DIBAF e pilota SAPR) ha partecipato alle operazioni di acquisizione dati anche il Dr. Matteo De Horatis (laureato in Conservazione e Restauro dell'Ambiente e delle Foreste e Difesa del Suolo presso l'Università degli Studi della Tuscia). Di seguito si riporta il calendario dei rilievi effettuati: Nel mese di settembre, ottobre e novembre sono stati effettuate le elaborazioni dei dati LiDAR acquisiti, l'estrazione delle metriche per ciascuna pianta e la successiva redazione del report finale.

Rilievi in campo

I rilievi in campo sono stati effettuati mediante l'impiego di:

- Sistema Aeromobile a Pilotaggio Remoto (SAPR) Skycrane V2 G4 della Multirotor Service-Drone equipaggiato con sensore Li-DAR Velodyne HDL-32;
- · Ground station ASUS ROG G752VY;
- GPS Leica Geosystem GS08+ a precisione centimetrica;
- Ground Control Points (GCP's);
- · Rotella metrica;
- · Vertex laser.

Per ciascun impianto sperimentale sono stati misurati a terra, su di un campione di circa 10 individui arborei, il diametro del fusto, l'altezza totale della pianta, l'altezza della prima foglia situata più in basso e i raggi delle chiome ortogonali e lungo il filare. I dati sono stati registrati su di un piedilista e utilizzati successivamente in fase di elaborazione per la validazione dei risultati ottenuti. Per ciascun impianto è stata predisposta una specifica missione di volo in grado di soddisfare sia esigenze di tipo produttivo (estensione ampia degli impianti ispezionati) e sia qualitativo (massima risoluzione spaziale ed elevata densità di punti per unità di superficie). Il sensore LiDAR è stato parametrizzato e calibrato in funzione dell'altezza di volo, della velocità di avanzamento e del FOV (*Field of View*). Si riporta di seguito un esempio di piano di volo e dei parametri impostati:

Elaborazione dati

Al termine di ciascuna missione di volo, sono stati scaricati nella *Ground station* i dati acquisiti dal sensore LiDAR (*download row data*). I dati grezzi, registrati dal sensore LiDAR in formato .pcap, sono stati elaborati nel modo seguente:

- sono stati convertiti in formato .las mediante l'impiego del sotware LasTools (Headwall Photonics Ltd.);
- sono stati filtrati e classificati per ottenere il Digital Terrain Model (DTM), Digital Surface Model (DSM) e il Canopy Height Model

- (CHM) mediante l'impiego del software CloudCompare;
- sono stati georeferenziati in ambiente GIS mediante l'impiego delle coordinate GPS dei GCP's;
- sono stati segmentati e classificati mediante l'impiego del software Trimble eCognition Devoloper;
- sono state estratte le metriche per ciascun individuo e organizzate in apposito foglio di calcolo Excel.

All'interno del foglio Excel sono stati riportati i valori dei parametri biometrici dei singoli individui arborei, divisi per campo sperimentale. I valori sono stati calcolati attraverso segmentazione e successiva classificazione delle nuvole di punti, mediante l'impiego del software TrimbleeCognition® Devoloper. Si riporta di seguito un esempio: Di seguito si riporta un estratto del foglio di calcolo Excel. I dati elaborati sono così suddivisi:

- ID: rappresenta il numero progressivo dei singoli individui campionati:
- Width_[m]: rappresenta il diametro della chioma lungo il filare;
- Length_[m]: rappresenta il diametro della chioma ortogonale al filare;
- Area_[mq]: rappresenta l'area di insidenza occupata dalla chioma;
- H_max_[m]: rappresnta l'altezza totale dei singoli individui;
- H_leaf_[m]: rappresenta l'altezza della foglia situata più in basso;
- H_depth_[m]: rappresenta la profondità della chioma (calcolata come differenza tra l'altezza totale del singolo individuo e il punto più basso della chioma);
- Volume_[mc]: rappresenta il volume della chioma (calcolato come il prodotto della profondità della chioma per l'area di insidenza).
- Diameter [cm]: diametro misurato a 130 cm da terra di alcuni individui arborei campionati.

Per alcuni parametri oggetto di incarico, viste le condizioni particolarmente complesse riscontrate in campo (elevata densità, composizione specifica variegata, strutture complesse delle chiome, etc.) non è stato possibile estrarre i valori dalle nuvole di punti, con particolare riferimento al diametro e all'altezza di inserzione della chioma.

Risultati dei Rilievi

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
1,85	3,29	2,61	13,10	4,40	8,69	22,69	20	664480,635	4998739,818
2,50	2,90	3,91	14,07	4,60	9,48	37,05	20	664497,524	4998749,842
1,46	2,19	1,85	11,27	5,10	6,16	11,40	18	664498,731	4998762,720
1,50	1,80	1,67	8,70	4,73	3,96	6,62	10	664507,309	4998754,690
3,00	4,10	6,43	12,90	4,47	8,43	54,19	20	664488,437	4998732,118
1,60	1,70	1,67	11,58	4,44	7,14	11,92	16	664479,819	4998753,087
2,93	3,77	6,39	14,05	4,59	9,46	60,46	20	664501,500	4998746,434
1,18	2,07	1,41	8,66	4,92	3,74	5,27	12	664523,393	4998754,098
3,00	3,80	5,61	11,62	4,37	7,24	40,63	12	664483,812	4998749,180
5,00	5,10	12,59	14,56	4,35	10,21	128,54	24	664482,758	4998762,970
1,71	2,32	2,23	9,97	5,01	4,96	11,06	10	664516,139	4998760,636
3,30	5,44	8,66	13,58	4,14	9,44	81,72	22	664465,652	4998751,899
2,89	4,75	6,69	14,75	4,51	10,24	68,50	22	664494,230	4998752,766
1,11	2,39	1,50	6,14	4,72	1,41	2,12	8	664511,987	4998750,482
3,57	3,65	5,90	13,97	4,46	9,51	56,09	22	664489,904	4998756,558
2,90	3,80	6,11	12,42	4,18	8,24	50,35	20	664469,049	4998748,870
1,90	2,00	1,92	10,29	4,51	5,78	11,09	16	664494,263	4998739,678
3,50	3,90	7,56	16,35	4,45	11,90	89,99	22	664485,529	4998760,106

Tabella 1 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,71	4,07	6,15	10,99	4,23	6,76	41,56	15	664473,526	4998758,383
2,26	2,68	3,72	11,68	4,84	6,84	25,44	12	664505,062	4998743,145
2,50	2,70	3,36	13,08	4,74	8,34	28,02	18	664507,429	4998769,322
2,64	4,09	5,81	13,55	4,24	9,31	54,09	24	664472,775	4998746,241
3,40	3,50	6,82	10,53	4,27	6,26	42,71	5	664475,528	4998756,212
1,26	2,43	1,98	12,08	4,78	7,30	14,45	14	664502,651	4998758,267
1,45	2,06	1,78	11,38	5,10	6,28	11,18	18	664494,915	4998766,158
1,50	1,50	1,48	12,83	4,73	8,09	11,98	20	664503,961	4998772,314
2,02	2,60	2,89	11,22	4,52	6,70	19,37	14	664490,949	4998742,464
1,90	2,30	2,50	11,01	5,13	5,88	14,70	11	664518,743	4998757,839
3,40	3,80	6,05	12,65	4,39	8,26	49,98	20	664485,101	4998735,582
3,20	3,70	6,68	14,64	4,39	10,25	68,46	20	664476,865	4998742,418
1,85	3,31	3,40	11,25	4,42	6,83	23,23	15	664487,924	4998745,353
1,44	1,78	1,36	14,17	5,22	8,95	12,17	18	664511,610	4998765,558
4,42	5,54	12,09	12,32	4,00	8,32	100,57	20	664452,219	4998817,904
1,42	1,46	1,35	6,73	3,85	2,88	3,88	14	664430,546	4998802,051
1,74	2,24	2,27	9,75	3,62	6,13	13,91	16	664427,273	4998828,672
1,26	2,43	1,71	12,81	3,57	9,24	15,80	8	664405,106	4998814,715
2,00	2,20	3,02	12,46	3,42	9,03	27,27	16	664412,350	4998820,137
2,87	3,51	6,07	11,75	3,84	7,91	48,00	18	664440,249	4998816,291
2,13	2,57	3,29	10,14	3,50	6,64	21,85	18	664416,360	4998802,569
3,90	4,60	10,05	14,92	3,74	11,18	112,33	24	664433,023	4998834,419
2,50	2,80	3,62	12,24	3,51	8,73	31,61	16	664415,663	4998814,905
2,00	2,50	2,25	8,53	3,64	4,89	10,99	12	664425,359	4998806,316
2,12	2,18	2,69	11,09	3,94	7,15	19,22	16	664435,608	4998820,313
1,85	3,12	2,55	9,29	3,80	5,50	14,01	16	664430,932	4998824,309
3,40	5,00	8,99	14,36	3,85	10,51	94,47	22	664442,835	4998825,494
2,52	3,98	5,52	13,99	3,75	10,24	56,52	20	664423,894	4998819,237
3,20	3,69	6,35	12,26	3,78	8,48	53,87	22	664437,600	4998807,292
3,46	5,05	10,57	13,98	3,93	10,05	106,20	22	664447,257	4998821,988
2,50	2,80	2,98	9,52	3,83	5,69	16,94	20	664411,634	4998805,832
3,14	4,61	6,68	14,65	3,71	10,94	73,08	24	664433,014	4998810,938
2,10	3,20	3,93	8,84	3,50	5,35	21,01	10	664418,417	4998824,093
1,79	2,75	2,37	13,48	3,39	10,08	23,90	21	664406,995	4998810,637
3,10	3,40	5,27	10,65	3,86	6,78	35,75	18	664445,150	4998812,779
3,40	4,30	8,02	13,86	3,87	9,99	80,14	22	664438,302	4998829,695
2,80	2,90	4,18	10,69	3,54	7,15	29,89	14	664420,087	4998811,397
1,70	2,40	2,33	9,86	3,91	5,96	13,88	18	664443,657	4998787,265
3,06	3,62	6,25	13,26	4,41	8,85	55,31	16	664484,037	4998788,736
1,10	1,32	0,91	11,21	4,28	6,93	6,31	16	664468,949	4998789,697
1,60	3,20	2,66	12,51	3,94	8,57	22,80	16	664451,434	4998778,791
2,06	3,66	4,43	13,23	4,31	8,91	39,49	20	664480,312	4998792,053
1,50	1,70	1,39	14,22	4,02	10,20	14,18	24	664457,535	4998788,084
1,72	2,67	2,03	13,79	4,26	9,53	19,35	18	664472,885	4998785,943
2,20	2,30	2,03	9,65	4,34	5,31	11,52	18	664477,323	4998781,633
2,80	2,80	3,40	14,51	4,16	10,35	35,17	22	664452,472	4998791,534
2,60	3,10	4,35	11,58	3,69	7,89	34,32	24	664433,055	4998791,534
1,70	2,60	2,29	11,94	4,20	7,75	17,74	20	664470,009	4998775,570
				4,20			16	664460,520	4998770,165
2,40 3,00	3,00 3,20	3,37 6,18	11,00 13,80	4,05	6,94 9,53	23,40 58,88	16	664476,347	4998770,165

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordina	ates (x;y)
2,90	3,20	4,52	13,58	3,98	9,60	43,37	20	664450,616	4998766,506
1,90	2,40	2,55	13,26	4,19	9,07	23,12	18	664464,127	4998793,869
2,43	4,50	4,70	12,90	4,12	8,78	41,28	18	664456,137	4998773,940
1,90	2,40	2,87	12,31	3,89	8,43	24,18	22	664446,648	4998771,752
3,05	4,20	6,98	13,87	4,34	9,53	66,51	20	664472,479	4998799,715
1,66	2,11	2,07	10,40	3,77	6,63	13,73	22	664436,880	4998779,170
1,20	1,60	0,96	11,47	4,44	7,03	6,75	18	664447,581	4998782,894
1,46	2,29	1,84	14,18	4,55	9,63	17,72	20	664465,777	4998779,432
2,10	2,20	2,76	12,10	4,07	8,03	22,15	18	664460,503	4998797,456
2,02	3,13	2,66	13,82	3,81	10,01	26,61	16	664440,730	4998775,757
1,27	1,48	1,20	13,25	4,10	9,16	10,99	22	664461,905	4998783,175

Tabella 1 - LIFE+ InBioWood, Area tartaro A, pioppi 'I-214' di 3 anni.

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
4,56	7,85	15,27	15,72	8,30	7,42	113,35		664704,940	4998573,563
4,40	4,80	13,20	15,43	13,69	1,74	23,01		664706,781	4998578,205
4,68	4,82	14,19	14,56	8,34	6,22	88,30		664677,792	4998574,292
4,40	6,30	12,29	14,25	9,81	4,43	54,51		664705,885	4998563,560
4,93	7,53	22,85	17,14	9,97	7,18	163,99		664670,311	4998563,699
5,73	6,83	22,34	16,19	9,38	6,81	152,22		664673,358	4998569,427
4,60	4,90	11,85	14,61	9,57	5,04	59,74		664689,952	4998571,063
5,20	5,40	15,46	16,90	14,11	2,79	43,07		664692,088	4998576,791
4,75	5,63	12,06	17,08	9,46	7,63	91,97		664682,360	4998578,482
3,09	5,09	8,37	17,63	9,93	7,70	64,46	19	664693,260	4998559,808
3,90	5,20	10,93	17,35	10,62	6,73	73,58		664682,532	4998561,742
1,86	2,78	2,80	15,53	11,12	4,41	12,35		664682,724	4998564,246
3,86	4,76	10,83	16,77	9,78	6,99	75,68	18	664697,226	4998563,900
5,59	6,20	16,30	17,08	8,66	8,42	137,21		664686,529	4998566,419
4,60	6,10	14,58	16,90	10,10	6,80	99,20		664699,124	4998570,092
4,67	6,84	16,02	15,75	9,95	5,80	92,96		664677,714	4998557,525
3,74	7,57	12,10	14,71	10,42	4,29	51,88		664697,109	4998550,283
4,84	6,84	15,62	16,27	9,11	7,16	111,90		664686,518	4998550,275
5,01	5,94	17,12	12,64	8,79	3,85	65,88		664700,911	4998554,156
4,31	8,28	20,31	17,33	12,47	4,86	98,63		664689,108	4998555,730
4,07	7,43	15,10	14,40	9,36	5,05	76,19		664638,690	4998610,899
4,73	7,03	16,01	17,42	9,00	8,42	134,74		664619,905	4998612,335
2,62	4,42	5,74	13,85	9,33	4,52	25,97		664677,840	4998615,132
4,07	6,10	10,88	17,06	9,59	7,46	81,20		664664,648	4998614,125
3,98	6,30	14,48	16,15	8,41	7,75	112,21		664661,529	4998617,823
3,06	4,78	7,47	14,04	9,06	4,98	37,19		664674,127	4998618,674
6,80	7,00	21,02	17,18	7,73	9,45	198,66		664631,435	4998618,184
3,34	4,93	8,43	15,60	9,46	6,14	51,79		664652,924	4998611,411
2,30	3,50	3,96	15,52	8,50	7,02	27,81		664649,290	4998614,176
4,61	6,92	9,66	17,00	15,14	1,86	17,97		664645,458	4998617,896
4,50	7,50	21,35	17,16	8,29	8,88	189,50		664615,563	4998616,225
3,30	5,28	8,60	14,05	9,77	4,28	36,78		664642,685	4998607,305
2,93	5,72	6,90	17,60	14,79	2,81	19,36		664656,820	4998607,804
4,30	5,20	10,96	16,70	8,72	7,98	87,49		664664,482	4998601,588
2,28	3,11	3,49	12,90	11,10	1,80	6,29		664676,487	4998602,547
4,80	5,70	12,95	16,82	11,24	5,58	72,22		664660,530	4998604,857

Tabella 2 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
3,67	6,82	11,90	15,11	11,44	3,67	43,73	15	664672,883	4998607,233
3,00	4,90	7,12	17,09	8,77	8,32	59,26		664669,496	4998608,524
4,80	5,80	14,76	17,29	9,26	8,03	118,48		664623,494	4998609,321
1,65	1,98	1,30	16,63	8,35	8,27	10,75		664662,271	4998586,485
4,00	5,30	10,25	17,20	9,22	7,98	81,76		664662,010	4998589,352
2,88	3,91	6,00	9,47	9,16	0,31	1,85		664674,489	4998591,271
3,60	4,00	7,14	13,51	8,67	4,85	34,62		664667,577	4998598,660
5,10	7,20	19,45	16,13	9,59	6,54	127,28		664654,421	4998581,901
3,90	7,08	14,11	14,59	8,76	5,83	82,28		664709,750	4998584,789
4,44	6,78	13,30	15,61	8,70	6,91	91,94		664699,585	4998585,766
3,60	4,30	6,70	17,38	8,18	9,20	61,63		664658,173	4998592,907
4,50	5,50	12,42	14,41	13,99	0,42	5,18		664701,797	4998591,686
4,36	5,70	14,50	17,97	8,38	9,60	139,19		664643,801	4998590,900
1,63	1,89	1,17	10,91	8,22	2,69	3,14		664642,233	4998593,670
5,04	7,71	18,79	18,02	9,46	8,56	160,86		664640,244	4998595,021
3,50	3,86	8,14	16,26	8,69	7,57	61,64		664654,395	4998597,096
4,29	5,50	13,62	16,93	11,33	5,60	76,22		664696,693	4998581,267
3,04	4,33	8,16	16,38	8,05	8,32	67,91		664686,223	4998582,708
3,79	4,88	9,69	15,66	8,64	7,03	68,07		664688,313	4998588,639
5,50	6,70	18,70	15,99	13,95	2,04	38,19		664692,313	4998592,482
3,78	7,19	12,75	14,27	9,20	5,06	64,55		664694,997	4998598,912
2,38	3,30	3,35	12,72	9,85	2,87	9,61		664612,062	4998649,508
3,97	4,57	6,63	16,11	8,59	7,52	49,88		664621,347	4998653,384
4,08	5,96	8,56	15,80	13,98	1,82	15,54		664607,995	4998652,923
2,80	3,30	5,02		8,35	8,03	40,33		664619,334	4998655,143
2,50	4,10	5,75	16,39 15,95	13,62	2,33	13,41		664601,126	4998659,138
								664594,373	· ·
4,10	4,70	10,83	15,40	10,78	4,62	50,00	1.4	664634,309	4998650,687
4,68	5,42	8,58	14,18	8,92	5,26	45,10	14	664630,183	4998641,609
3,76	4,63	10,11	16,67	11,82	4,85	49,06		<u> </u>	4998644,658
4,87	8,26	13,90	16,39	10,30	6,09	84,64		664625,513	4998648,878
4,00	5,60	13,30	16,50	14,44	2,07	27,52		664587,079	4998642,645
3,97	4,73	11,37	16,30	14,44	1,86	21,17		664582,946	4998646,733
3,19	4,85	9,55	15,82	9,11	6,71	64,12		664620,323	4998641,830
3,19	5,71	13,17	14,83	10,22	4,61	60,70		664607,207	4998640,056
4,36	6,17	12,64	17,07	13,93	3,14	39,71		664614,377	4998646,316
5,30	7,20	16,11	16,35	14,78	1,57	25,32		664599,585	4998646,332
2,70	4,70	6,81	13,87	10,97	2,90	19,73		664670,692	4998621,752
5,18	6,91	15,47	15,60	13,40	2,20	34,05		664667,100	4998625,714
2,00	2,40	2,25	10,32	8,35	1,98	4,45		664663,187	4998628,568
3,80	6,60	12,63	16,99	12,10	4,89	61,74		664626,156	4998622,275
3,47	6,11	8,31	15,25	7,96	7,29	60,60		664638,796	4998624,688
0,58	1,02	0,38	15,77	8,37	7,41	2,81		664636,298	4998625,021
3,60	4,10	8,12	14,11	7,66	6,45	52,36		664631,688	4998630,215
3,20	3,80	5,12	14,15	8,58	5,57	28,51		664627,757	4998634,806
3,40	3,40	6,19	15,32	7,97	7,35	45,52		664623,198	4998638,293
4,85	5,52	15,74	16,13	14,90	1,22	19,27		664610,879	4998622,102
5,50	6,10	16,76	15,16	10,86	4,30	72,07		664605,784	4998626,495
3,56	4,79	9,98	16,38	8,42	7,97	79,49		664621,478	4998626,113
2,93	3,02	5,03	14,78	10,69	4,08	20,55		664617,444	4998629,960
5,50	5,90	18,23	17,12	9,14	7,99	145,60		664602,557	4998629,736

Tabella 2 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordina	ates (x;y)
4,60	5,10	12,12	15,26	9,28	5,98	72,51		664612,587	4998634,640
4,49	5,01	14,89	16,52	7,91	8,60	128,08		664593,283	4998636,534
3,90	5,90	13,42	15,75	7,96	7,79	104,49		664651,329	4998624,898
2,92	4,34	8,29	10,72	7,95	2,77	22,96		664646,271	4998629,151
2,65	4,38	5,83	13,34	8,64	4,70	27,39		664643,717	4998633,035
3,70	4,40	7,36	13,94	8,14	5,80	42,67		664640,128	4998637,052
3,53	4,24	9,17	9,17	8,60	0,58	5,27	5	664653,947	4998636,380
3,55	4,60	7,00	16,11	8,50	7,61	53,27		664609,749	4998663,791
4,30	4,70	12,39	17,23	8,81	8,42	104,31		664606,310	4998667,061
1,91	3,87	4,30	12,47	8,04	4,43	19,04		664615,153	4998670,371
4,33	6,47	15,20	17,14	9,01	8,13	123,58		664602,521	4998670,547
2,65	6,24	9,05	12,08	8,49	3,60	32,54		664609,388	4998676,515
3,30	4,50	7,46	17,07	14,61	2,46	18,38		664595,645	4998662,917
6,22	8,48	26,45	18,15	10,23	7,92	209,46		664635,682	4998598,375
5,46	7,83	24,14	17,97	10,12	7,85	189,40		664632,554	4998602,132
2,94	5,29	6,32	16,86	8,40	8,46	53,47		664649,900	4998599,681
4,03	5,07	11,96	17,94	8,42	9,52	113,87		664647,150	4998602,009
4,11	4,28	9,86	16,42	9,77	6,66	65,62		664612,961	4998660,752
3,40	4,70	9,78	13,90	8,15	5,75	56,27		664615,780	4998657,860
5,35	7,54	17,41	14,61	9,53	5,08	88,48		664656,157	4998621,504
2,55	3,24	5,18	12,71	10,08	2,63	13,60		664646,491	4998642,746

 Tabella 2 - LIFE+ InBioWood, Area tartaro B, pioppi 'I-214' di 2,5 anni.

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Coordin	ates (x;y)
2,03	3,23	2,54	13,40	11,71	1,70	4,31	665173,825	4998130,890
2,30	2,30	2,98	14,78	11,55	3,23	9,62	665159,999	4998131,552
3,80	3,90	7,41	11,23	8,75	2,48	18,35	665138,561	4998130,576
4,18	7,40	14,99	14,33	10,00	4,33	64,85	665144,612	4998134,130
3,00	3,20	4,62	14,14	10,23	3,90	18,03	665148,138	4998137,503
2,80	5,10	6,07	13,83	10,84	2,99	18,14	665167,285	4998121,473
3,20	3,50	5,12	10,43	8,84	1,59	8,15	665151,315	4998124,160
1,80	2,20	2,26	13,92	9,61	4,31	9,73	665156,421	4998126,975
4,00	4,91	9,55	14,22	11,96	2,26	21,63	665142,118	4998126,232
4,01	4,98	10,98	14,39	9,90	4,49	49,32	665163,281	4998117,663
1,91	2,17	1,79	14,51	12,15	2,36	4,22	665128,874	4998170,932
1,30	1,90	1,09	13,90	11,07	2,83	3,08	665128,444	4998172,474
4,06	8,55	14,73	13,99	10,28	3,71	54,65	665111,551	4998179,323
1,70	3,05	2,55	13,64	12,42	1,22	3,10	665142,196	4998170,821
3,19	5,50	8,92	14,41	8,19	6,23	55,53	665137,224	4998172,552
1,40	3,20	2,19	14,27	12,16	2,11	4,62	665132,532	4998175,601
1,94	4,57	4,98	11,02	8,64	2,38	11,87	665141,032	4998176,337
2,90	4,30	5,64	14,89	11,25	3,64	20,55	665136,284	4998161,121
2,60	3,40	3,79	14,60	11,98	2,63	9,96	665139,618	4998166,059
1,30	2,00	0,96	11,80	8,12	3,68	3,53	665148,208	4998166,469
3,80	4,60	8,34	12,28	8,92	3,37	28,06	665132,393	4998167,792
2,49	4,31	5,74	14,17	9,68	4,49	25,80	665122,047	4998161,433
3,44	5,07	8,71	14,49	11,20	3,29	28,70	665126,155	4998166,436
4,00	5,10	11,08	15,24	8,15	7,08	78,48	665131,715	4998140,103
1,65	1,96	2,09	11,67	10,18	1,49	3,12	665146,979	4998145,720
1,62	2,96	2,71	14,69	10,03	4,66	12,63	665141,251	4998147,170

Tabella 3 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Coordina	ates (x;y)
2,20	2,90	3,24	15,73	14,74	1,00	3,23	665138,638	4998150,762
3,00	3,36	4,65	13,85	11,29	2,56	11,89	665143,857	4998151,421
3,50	4,70	7,18	15,20	10,32	4,88	35,00	665133,244	4998155,995
2,88	4,15	5,47	14,24	12,29	1,95	10,66	665152,764	4998141,656
2,07	4,56	5,35	13,99	9,86	4,13	22,08	665154,802	4998152,887
3,11	4,16	5,07	14,92	10,85	4,07	20,61	665126,211	4998146,516
3,70	5,99	12,18	14,39	8,48	5,91	71,96	665123,458	4998150,559
3,32	6,35	9,08	15,43	9,82	5,61	50,96	665129,588	4998151,249
3,40	5,76	10,26	13,46	8,75	4,71	48,29	665117,761	4998157,561
1,78	2,42	2,56	11,20	8,84	2,36	6,04	665110,852	4998215,836
3,10	6,20	7,09	13,45	9,30	4,15	29,41	665070,859	4998218,381
4,00	4,60	9,61	12,15	8,70	3,46	33,20	665077,637	4998217,186
2,69	3,52	5,93	11,93	7,86	4,07	24,13	665105,754	4998211,714
4,65	6,02	13,79	12,23	7,98	4,26	58,70	665090,769	4998212,479
4,20	6,90	15,25	12,47	8,19	4,28	65,25	665094,995	4998217,826
4,19	6,40	12,45	13,90	8,65	5,26	65,44	665065,443	4998210,602
3,80	4,30	9,19	9,72	7,75	1,97	18,07	665055,567	4998212,501
1,77	2,17	1,94	12,45	10,17	2,28	4,42	665068,537	4998213,915
2,74	3,48	5,49	14,54	11,67	2,88	15,78	665105,308	4998201,478
2,25	3,96	4,38	12,40	8,51	3,89	17,02	665098,362	4998203,090
•			-					
2,46	3,36	2,68	14,39	13,22	1,17	3,12	665108,190	4998205,937
2,37	3,18	3,53	12,70	9,82	2,88	10,16	665102,298	4998207,424
3,77	5,28	10,73	13,97	11,99	1,99	21,30	665092,667	4998206,875
3,84	4,32	10,51	12,06	9,99	2,07	21,75	665129,944	4998201,046
3,24	6,37	9,26	12,49	8,30	4,19	38,77	665059,052	4998207,788
4,03	5,32	9,92	13,38	8,06	5,33	52,83	665071,438	4998199,080
3,60	6,90	11,27	13,65	8,92	4,73	53,35	665075,941	4998203,756
1,93	2,58	1,97	11,49	10,34	1,16	2,28	665084,244	4998203,339
3,83	5,96	10,08	11,36	9,20	2,17	21,82	665113,119	4998201,987
2,50	3,30	4,48	10,53	9,02	1,51	6,77	665123,053	4998210,057
2,66	3,84	5,39	11,19	7,94	3,26	17,57	665145,041	4998180,619
2,68	4,49	7,08	12,90	8,44	4,46	31,61	665091,158	4998182,900
2,86	3,61	5,50	13,82	9,54	4,28	23,53	665095,079	4998186,994
1,19	2,93	1,88	13,30	10,34	2,96	5,57	665102,887	4998187,235
3,70	5,60	11,16	14,54	10,45	4,09	45,60	665098,883	4998190,831
1,08	2,28	1,29	13,89	10,90	2,98	3,85	665106,880	4998191,331
1,28	2,09	1,56	12,92	10,66	2,26	3,53	665090,993	4998194,336
3,07	5,08	6,59	15,13	11,50	3,62	23,86	665104,493	4998194,838
3,40	4,08	6,72	14,79	10,64	4,16	27,94	665101,185	4998196,418
4,12	5,79	9,81	13,22	12,38	0,83	8,15	665081,826	4998185,258
4,09	6,72	13,19	13,90	8,58	5,32	70,20	665078,654	4998189,979
3,93	9,47	16,93	14,77	9,47	5,29	89,59	665083,005	4998192,554
3,60	4,10	6,42	14,53	10,35	4,17	26,80	665087,159	4998197,710
3,22	6,32	12,05	11,75	10,82	0,93	11,25	665078,687	4998197,985
2,77	3,78	4,81	14,64	10,81	3,83	18,41	665109,795	4998185,722
3,40	3,50	6,27	15,58	12,88	2,70	16,94	665123,903	4998187,533
4,11	6,72	9,43	13,52	8,71	4,82	45,42	665116,882	4998187,406
5,65	8,17	22,58	13,42	9,78	3,65	82,30	665121,588	4998193,016
1,30	2,77	1,85	14,93	13,57	1,36	2,53	665113,281	4998190,503
1,76	3,95	2,42	14,68	8,38	6,30	15,24	665127,414	4998193,619

Tabella 3 - segue pagina successiva

1,79 3,80 2,29 5,65 4,76 2,60 3,82 2,90 3,57 5,74 3,10 4,00 2,16 3,10 2,82 3,73	2,00 6,12 3,74 8,88 5,82 2,90 6,13 4,40 4,24 6,22 3,80 6,00 3,17 4,60 2,95	1,90 14,37 4,56 21,83 16,43 4,55 13,95 5,14 8,73 16,86 5,95 11,87 2,75 6,35	13,12 14,26 11,95 14,77 14,94 13,68 12,55 14,09 14,66 13,95 14,89 12,08	9,15 7,79 9,06 8,39 8,93 8,26 8,98 11,43 8,86 8,22 13,09	3,97 6,47 2,89 6,38 6,01 5,42 3,57 2,66 5,80 5,73	7,54 93,03 13,17 139,21 98,81 24,67 49,82 13,68 50,63	665117,597 665115,393 665070,149 665073,268 665081,828 665077,916 665055,466 665062,464 665057,799	4998197,234 4998200,116 4998251,720 4998255,052 4998244,091 4998249,728 4998242,566 4998243,021
2,29 5,65 4,76 2,60 3,82 2,90 3,57 5,74 3,10 4,00 2,16 3,10 2,82	3,74 8,88 5,82 2,90 6,13 4,40 4,24 6,22 3,80 6,00 3,17 4,60	4,56 21,83 16,43 4,55 13,95 5,14 8,73 16,86 5,95 11,87 2,75	11,95 14,77 14,94 13,68 12,55 14,09 14,66 13,95 14,89	9,06 8,39 8,93 8,26 8,98 11,43 8,86 8,22	2,89 6,38 6,01 5,42 3,57 2,66 5,80	13,17 139,21 98,81 24,67 49,82 13,68	665070,149 665073,268 665081,828 665077,916 665055,466 665062,464	4998251,720 4998255,052 4998244,091 4998249,728 4998242,566 4998243,021
5,65 4,76 2,60 3,82 2,90 3,57 5,74 3,10 4,00 2,16 3,10 2,82	8,88 5,82 2,90 6,13 4,40 4,24 6,22 3,80 6,00 3,17 4,60	21,83 16,43 4,55 13,95 5,14 8,73 16,86 5,95 11,87 2,75	14,77 14,94 13,68 12,55 14,09 14,66 13,95 14,89	8,39 8,93 8,26 8,98 11,43 8,86 8,22	6,38 6,01 5,42 3,57 2,66 5,80	139,21 98,81 24,67 49,82 13,68	665073,268 665081,828 665077,916 665055,466 665062,464	4998255,052 4998244,091 4998249,728 4998242,566 4998243,021
4,76 2,60 3,82 2,90 3,57 5,74 3,10 4,00 2,16 3,10 2,82	5,82 2,90 6,13 4,40 4,24 6,22 3,80 6,00 3,17 4,60	16,43 4,55 13,95 5,14 8,73 16,86 5,95 11,87 2,75	14,94 13,68 12,55 14,09 14,66 13,95 14,89	8,93 8,26 8,98 11,43 8,86 8,22	6,01 5,42 3,57 2,66 5,80	98,81 24,67 49,82 13,68	665081,828 665077,916 665055,466 665062,464	4998244,091 4998249,728 4998242,566 4998243,021
2,60 3,82 2,90 3,57 5,74 3,10 4,00 2,16 3,10 2,82	2,90 6,13 4,40 4,24 6,22 3,80 6,00 3,17 4,60	4,55 13,95 5,14 8,73 16,86 5,95 11,87 2,75	13,68 12,55 14,09 14,66 13,95 14,89	8,26 8,98 11,43 8,86 8,22	5,42 3,57 2,66 5,80	24,67 49,82 13,68	665077,916 665055,466 665062,464	4998249,728 4998242,566 4998243,021
3,82 2,90 3,57 5,74 3,10 4,00 2,16 3,10 2,82	6,13 4,40 4,24 6,22 3,80 6,00 3,17 4,60	13,95 5,14 8,73 16,86 5,95 11,87 2,75	12,55 14,09 14,66 13,95 14,89	8,98 11,43 8,86 8,22	3,57 2,66 5,80	49,82 13,68	665055,466 665062,464	4998242,566 4998243,021
2,90 3,57 5,74 3,10 4,00 2,16 3,10 2,82	4,40 4,24 6,22 3,80 6,00 3,17 4,60	5,14 8,73 16,86 5,95 11,87 2,75	14,09 14,66 13,95 14,89	11,43 8,86 8,22	2,66 5,80	13,68	665062,464	4998243,021
3,57 5,74 3,10 4,00 2,16 3,10 2,82	4,24 6,22 3,80 6,00 3,17 4,60	8,73 16,86 5,95 11,87 2,75	14,66 13,95 14,89	8,86 8,22	5,80		665062,464	
5,74 3,10 4,00 2,16 3,10 2,82	6,22 3,80 6,00 3,17 4,60	16,86 5,95 11,87 2,75	13,95 14,89	8,22		50,63		
3,10 4,00 2,16 3,10 2,82	3,80 6,00 3,17 4,60	5,95 11,87 2,75	14,89		5.73		,,,	4998247,004
4,00 2,16 3,10 2,82	6,00 3,17 4,60	11,87 2,75		13,09	3,13	96,64	665066,081	4998247,224
4,00 2,16 3,10 2,82	6,00 3,17 4,60	11,87 2,75			1,80	10,69	665061,018	4998250,658
2,16 3,10 2,82	3,17 4,60	2,75		9,24	2,84	33,65	665099,146	4998222,601
3,10 2,82	4,60		10,58	8,04	2,54	6,99	665094,820	4998236,110
2,82		0,00	11,50	8,55	2,95	18,75	665081,392	4998220,708
		4,88	13,60	8,80	4,80	23,42	665077,860	4998227,315
	4,15	8,71	10,97	8,66	2,31	20,15	665087,734	4998228,781
2,99	4,61	8,01	12,42	7,01	5,41	43,30	665079,739	4998230,930
2,60	2,98	2,42	12,49	8,20	4,28	10,36	665073,173	4998233,416
4,13	5,85	13,76	13,43	8,69	4,74	65,19	665083,574	4998234,811
3,20	3,20	6,71	13,40	8,00	5,41	36,27	665086,640	4998239,865
2,97	4,93	6,84	13,67	9,70	3,97	27,14	665079,204	4998240,721
3,60	5,10	11,38	11,26	7,58	3,68	41,84	665051,902	4998218,706
2,90	4,90	6,27	13,05	9,09	3,96	24,80	665055,650	4998221,982
1,25	2,37	0,99	11,81	8,73	3,09	3,05	665065,852	4998225,618
2,23	2,95	2,99	13,46	8,63	4,83	14,43	665068,569	4998226,500
3,40	4,70	6,98	15,09	8,63	6,46	45,10	665051,118	4998227,271
2,90	3,60	4,57	12,58	10,01	2,57	11,74	665058,981	4998225,805
1,79	2,59	1,76	12,92	11,24	1,68	2,95	665062,749	4998229,624
4,00	4,50	6,82	14,71	9,64	5,07	34,56	665054,676	4998230,190
1,80	2,40	1,52	12,44	10,31	2,13	3,24	665053,557	4998232,917
2,79	5,02	6,42	13,29	10,23	3,06	19,63	665064,635	4998234,008
3,65	4,79	6,96	14,85	10,04	4,81	33,48	665050,652	4998236,133
5,75	7,69	16,61	15,32	8,49	6,83	113,45	665059,221	4998237,616
3,70	4,70	6,29	14,45	11,01	3,44	21,61	665052,771	4998239,448
4,30	5,70	14,94	13,97	7,67	6,30	94,11	665047,757	4998223,789
						66,98	· ·	4998245,607
3,50	5,91 5,42	10,17	14,38	7,79 8,70	6,59 5,48	55,79	665074,505 665071,145	4998245,607
			14,18			<u> </u>		,
2,87	6,12	7,58	14,93	8,97	5,96	45,19	665066,520	4998223,052
4,60	6,00	11,99	15,13	9,19	5,94	71,28	665063,459	4998219,072
3,28	4,89	9,75	11,24	9,41	1,84	17,91	665071,550	4998208,663
2,48	2,56	3,48	13,58	9,26	4,32 6.85	15,04	665046,594	4998231,382
5,10	7,50	16,44	14,66	7,81	6,85	112,68	665044,157	4998228,158 4998215,518
4,46	6,77	7.04	14,72	8,23	6,49	110,96	665059,839	
2,60	4,20	7,04	12,87	7,94	4,94	34,75	665067,448	4998237,779
3,30	3,40	6,60	14,12	11,24	2,88	18,99	665170,713	4998126,337
2,70	3,30	4,77	12,36	8,33	4,02	19,19	665118,922	4998206,039
3,55	6,45	13,72	14,21	9,28	4,93	67,57	665102,801	4998178,585
3,10	5,10	8,18	13,37	10,58	2,79	22,80	665089,899	4998202,106
3,37 4,75	4,80 6,06	6,58	12,31 15,07	10,00	2,31 4,77	15,20 66,35	665087,744 665106,903	4998208,540 4998181,464

 Tabella 3 - LIFE+ InBioWood, Area Tartaro C, pioppi 'I-214' di 3,5 anni.

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,30	2,30	3,42	5,55	3,28	2,27	7,76		663991,399	4997806,374
2,90	3,10	7,14	7,28	4,13	3,15	22,47		664001,663	4997806,258
2,30	2,70	4,57	5,82	4,21	1,61	7,36		663996,499	4997809,885
2,60	3,20	5,11	6,60	5,37	1,24	6,32		663954,876	4997802,913
2,84	3,49	6,44	7,25	3,93	3,32	21,40		663960,030	4997807,110
1,00	2,00	1,39	4,29	2,82	1,47	2,05		663949,772	4997806,747
2,90	4,07	6,89	8,82	5,00	3,82	26,32		663954,453	4997810,690
3,20	3,70	7,77	7,00	4,77	2,23	17,32		664011,682	4997806,057
2,50	2,90	4,41	7,80	5,15	2,65	11,70	11,8	664016,819	4997809,323
2,90	4,19	6,82	6,18	3,86	2,32	15,82		663969,844	4997806,458
1,90	2,60	4,14	5,69	5,12	0,57	2,38		663945,130	4997802,615
3,00	3,10	6,29	5,34	3,95	1,39	8,75		663932,857	4997803,235
2,30	2,60	3,03	6,67	5,16	1,51	4,58		663974,137	4997809,825
2,70	3,00	6,46	7,22	5,31	1,91	12,33		663927,765	4997807,613
3,00	4,00	8,64	6,78	4,08	2,71	23,41		663918,026	4997807,700
3,10	3,80	7,51	7,74	4,94	2,80	21,04		663891,262	4997803,175
2,00	3,50	4,14	6,15	4,92	1,23	5,08		663886,575	4997808,004
1,50	3,50	3,79	5,55	4,07	1,47	5,59		663849,499	4997803,650
2,20	2,50	4,46	5,97	5,30	0,67	2,98		663861,667	4997803,850
3,50	3,80	9,50	8,09	4,96	3,13	29,73		663813,362	4997804,486
1,66	2,07	2,32	6,58	4,29	2,29	5,31		663822,990	4997804,337
1,58	2,85	2,92	6,82	4,33	2,49	7,26		663871,947	4997803,978
	,								
3,00	3,40	6,10	6,91	5,24	1,67	10,21		663876,849	4997807,906
3,10	3,20	7,03	5,73	3,56	2,17	15,23		663866,573	4997808,555
1,70	3,10	4,24	6,54	4,11	2,43	10,29		663840,370	4997804,125
2,26	2,73	4,00	7,41	3,43	3,98	15,93		663844,842	4997807,641
1,40	1,70	1,65	6,25	4,77	1,48	2,45		663881,723	4997811,669
1,63	2,21	2,45	4,92	4,21	0,71	1,74		663871,343	4997812,572
2,00	3,00	3,66	6,61	4,97	1,64	6,02	10.0	663803,248	4997804,222
2,90	3,10	7,63	8,05	5,94	2,11	16,08	10,8	663793,117	4997804,598
2,90	3,20	5,91	7,58	5,15	2,43	14,34		663788,323	4997808,295
2,07	2,82	3,23	7,12	6,12	1,00	3,22		663793,165	4997811,228
2,37	3,24	4,62	7,37	4,08	3,29	15,19		663782,978	4997804,348
1,60	1,70	1,83	6,42	4,21	2,20	4,03		663771,629	4997811,808
2,13	2,37	3,69	6,56	5,28	1,28	4,72		663761,402	4997805,012
3,20	3,30	6,84	6,99	4,32	2,67	18,27		663756,716	4997808,885
3,00	3,60	6,81	6,96	3,10	3,86	26,32		663747,271	4997809,438
1,83	2,95	3,61	6,15	3,59	2,56	9,26		663719,627	4997804,665
1,60	2,00	2,10	6,53	4,17	2,36	4,95		663709,722	4997811,211
2,60	2,80	5,40	6,40	2,96	3,44	18,59		663729,727	4997812,074
2,50	2,80	5,50	6,76	5,43	1,33	7,33		664006,729	4997802,044
2,40	3,40	5,10	6,38	5,14	1,24	6,34		663986,883	4997802,170
3,00	3,10	6,22	6,44	3,63	2,80	17,44		663975,266	4997802,598
2,24	2,66	4,18	6,47	3,80	2,67	11,15		663964,685	4997802,984
2,50	2,90	5,60	8,14	3,95	4,19	23,45		663923,097	4997803,054
2,09	2,79	4,14	4,63	4,22	0,41	1,68		664028,626	4997801,801
2,20	2,80	3,93	5,01	4,36	0,64	2,52		664047,009	4997801,761
1,90	3,10	3,97	4,94	4,15	0,80	3,16		664058,915	4997801,810
3,10	3,30	7,12	5,65	2,54	3,11	22,17		664068,705	4997801,112
2,51	2,70	4,74	5,55	4,81	0,74	3,50		664079,057	4997800,518

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
1,90	2,00	2,55	3,73	2,58	1,15	2,94		664097,176	4997800,389
3,30	3,50	9,45	9,67	7,94	1,73	16,30		664100,769	4997799,886
2,70	4,00	7,92	6,36	4,03	2,33	18,41		664089,233	4997800,030
2,10	2,40	2,59	4,16	4,16	0,00	0,00		664120,735	4997799,956
2,90	3,20	6,49	7,15	4,49	2,67	17,30		664162,690	4997799,228
3,20	3,50	8,35	7,04	6,87	0,17	1,41		664152,200	4997799,287
2,80	4,00	8,62	7,67	3,95	3,72	32,08		664172,461	4997799,003
2,30	2,70	3,10	7,45	6,16	1,29	3,99		664204,774	4997798,888
2,80	3,10	6,86	6,20	4,24	1,95	13,39		664184,605	4997798,782
2,60	2,80	6,12	7,81	6,17	1,64	10,06		664214,427	4997799,355
2,43	4,01	6,47	7,33	4,70	2,63	16,99		664256,644	4997798,418
2,70	3,80	6,67	7,00	4,14	2,86	19,09		664298,238	4997796,203
3,20	3,50	6,01	5,68	4,03	1,65	9,92		664330,829	4997796,039
3,40	3,40	8,72	7,25	6,49	0,76	6,63		664310,444	4997795,765
3,90	4,20	10,99	8,23	5,01	3,22	35,38		664320,662	4997795,516
2,60	3,00	5,19	4,65	4,17	0,48	2,49		664043,695	4997806,030
2,70	2,80	4,63	5,44	5,17	0,27	1,24		664033,637	4997806,143
1,50	1,60	1,58	2,51	1,74	0,76	1,21		664127,825	4997804,046
2,00	2,50	2,16	6,73	4,09	2,64	5,71		664151,881	4997806,581
3,40	3,60	8,72	7,12	4,66	2,46	21,47		664171,467	4997806,379
2,00	2,40	3,37	5,93	3,76	2,17	7,31		664286,917	4997805,749
3,00	3,00	6,28	7,89	5,38	2,51	15,77		664297,189	4997805,222
	,		· ·						
0,83	2,25	1,24	3,74	1,55	2,19	2,72	12.4	664320,180	4997805,018
3,70	3,90	10,57	9,15	6,42	2,73	28,87	12,4	664308,877	4997805,112
3,60	4,10	10,14	7,97	5,81	2,16	21,91		664319,113	4997805,286
2,30	3,00	5,19	6,99	4,77	2,23	11,56		664329,078	4997805,311
2,50	2,60	4,74	6,13	5,08	1,05	4,96		664161,664	4997806,503
3,20	4,10	9,22	7,66	5,77	1,89	17,46		664340,807	4997795,287
2,50	2,90	5,20	3,34	3,34	0,00	0,00		664353,356	4997794,450
3,00	3,10	7,32	5,14	4,63	0,51	3,73		664373,651	4997794,215
1,10	1,70	1,43	2,14	1,80	0,34	0,49		664801,392	4997803,593
2,10	2,20	3,07	1,99	1,79	0,21	0,63		664798,425	4997804,134
3,28	3,59	7,50	8,15	7,01	1,13	8,50		664573,035	4997802,356
2,20	2,50	4,12	1,97	1,23	0,74	3,05		664554,224	4997807,818
2,54	3,58	6,18	2,64	1,04	1,60	9,91		664543,956	4997807,403
1,79	2,24	2,61	2,60	1,30	1,30	3,39		664508,687	4997807,733
3,90	6,00	13,97	5,18	4,47	0,71	9,89		664423,673	4997794,163
3,25	4,06	6,42	1,89	1,03	0,85	5,49		664429,301	4997804,250
2,80	3,30	5,71	2,42	1,65	0,77	4,38		664438,676	4997804,468
3,30	5,60	11,82	5,75	3,95	1,80	21,32		664411,929	4997804,555
2,50	2,70	5,07	6,77	4,29	2,47	12,54		664361,545	4997804,672
2,43	3,97	5,69	5,64	3,32	2,32	13,20		665134,484	4997783,158
1,45	3,21	2,27	6,92	4,79	2,14	4,85		664444,155	4997793,397
2,60	3,80	6,40	6,84	2,57	4,27	27,31		664463,410	4997792,773
2,70	4,50	6,41	7,14	2,73	4,42	28,31		664492,040	4997802,215
2,00	2,10	2,54	1,44	0,73	0,70	1,79		664486,526	4997797,224
1,30	1,30	1,35	2,18	1,25	0,93	1,26		664496,276	4997797,391
3,41	3,78	8,61	7,64	3,24	4,41	37,96		664532,731	4997802,508
4,60	6,30	23,54	7,06	4,03	3,03	71,33		664472,599	4997803,736
2,40	2,90	4,83	6,40	4,84	1,57	7,56		664553,360	4997802,729

Tabella 4 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
3,80	4,00	11,08	7,56	5,37	2,19	24,28		664603,225	4997802,174
3,40	3,70	10,26	7,38	6,24	1,14	11,67		664593,533	4997802,163
3,50	4,02	8,61	6,82	3,15	3,67	31,56		664583,438	4997802,178
3,10	3,70	7,71	8,56	4,65	3,91	30,13		664612,791	4997802,052
3,20	4,00	8,44	5,86	3,92	1,94	16,37		664723,505	4997800,925
4,40	5,10	14,77	6,83	2,97	3,86	56,97		664733,798	4997800,027
2,20	3,90	6,06	5,50	3,67	1,83	11,09		664753,860	4997799,104
3,50	3,60	9,37	6,84	4,00	2,84	26,62		664783,373	4997799,066
2,08	3,12	4,33	6,03	2,60	3,43	14,85		664810,404	4997798,424
3,20	3,40	8,99	7,32	1,84	5,49	49,32		664803,542	4997798,606
3,10	5,00	10,80	7,26	5,91	1,36	14,64		664827,461	4997798,441
1,70	2,20	3,11	4,10	3,37	0,72	2,25		664829,323	4997788,388
2,30	4,10	7,64	5,61	1,29	4,32	33,00		664867,154	4997797,906
3,10	3,90	8,45	7,56	4,53	3,03	25,58		664878,318	4997797,338
2,50	3,00	4,75	2,33	1,99	0,34	1,62		664858,678	4997802,909
2,06	3,43	4,84	6,28	4,00	2,29	11,06		664848,262	4997798,194
2,80	2,90	5,56	7,36	5,95	1,41	7,84		664858,333	4997797,700
2,82	3,39	6,19	5,49	4,28	1,21	7,49		664859,521	4997787,310
6,10	6,90	9,29	5,37	3,81	1,56	14,48		665133,963	4997793,493
3,66	4,50	11,19	7,61	4,41	3,20	35,79		664887,542	4997797,461
2,90	3,50	7,38	5,64	4,82	0,82	6,04		664897,973	4997797,147
2,70	3,90	5,89	5,31	2,24	3,07	18,08		665055,199	4997784,044
4,31	4,57	12,19	7,91	3,66	4,24	51,73		664925,574	4997796,891
2,60	2,60	5,08	6,12	5,46	0,66	3,34		664907,865	4997796,939
2,30	2,50	4,41	6,99	5,61	1,38	6,11		664934,812	4997797,151
1,30	1,80	1,84	3,34	1,53	1,81	3,33		664951,113	4997796,444
3,70	5,20	12,06	6,42	5,59	0,83	10,01		665084,660	4997783,993
2,90	3,60	7,54	6,73	3,39	3,34	25,19		664955,572	4997796,196
2,70	3,60	6,17	6,38	1,94	4,44	27,36		664966,204	4997795,500
2,30	3,49	4,91	5,56	4,97	0,59	2,92		664946,994	4997786,929
7,50	8,00	12,74	7,04	1,99	5,05	64,38		665103,182	4997794,184
2,20	2,20	3,45	6,40	3,10	3,29	11,37		664976,488	4997785,311
2,80	3,20	6,07	2,04	0,78	1,26	7,67		664998,654	4997800,346
3,00	5,10	10,05	8,71	5,31	3,40	34,14	11,5	665113,347	4997793,925
2,30	3,60	15,06	6,36	4,95	1,42	21,31		665123,640	4997794,921
1,40	1,60	1,74	5,61	4,74	0,87	1,51		665074,310	4997783,323
4,60	6,20	20,47	7,06	5,91	1,15	23,56		665104,585	4997784,784
4,40	6,00	14,84	7,19	5,16	2,04	30,23		665113,539	4997784,733
2,35	2,40	3,02	6,14	5,61	0,53	1,61		665123,918	4997783,949
5,10	5,80	20,43	5,84	4,10	1,74	35,63		665073,788	4997792,947

 Tabella 4 - LIFE+ InBioWood, Area Tione A, pioppi 'I-214' di 1,5 anni.

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,81	3,23	4,30	5,96	2,65	3,31	14,24		659943,058	5001466,643
2,20	2,40	3,85	6,73	2,73	4,00	15,40		660085,210	5001115,138
3,76	3,92	6,88	7,07	3,22	3,85	26,51		660082,729	5001121,105
2,40	3,60	5,23	6,83	3,32	3,51	18,36		660056,617	5001181,184
4,10	4,50	11,40	8,13	2,95	5,18	59,03		660077,826	5001131,464
2,69	3,31	4,67	7,01	3,78	3,22	15,06		660070,828	5001148,275
3,03	4,09	8,14	6,46	3,41	3,05	24,80		660072,929	5001142,634
3,17	3,65	6,86	6,27	3,54	2,73	18,76		660017,960	5001269,797
3,30	5,40	11,35	8,79	2,67	6,12	69,42		660020,232	5001264,060
2,95	4,66	7,45	7,64	2,65	4,98	37,13		660108,562	5001065,864
3,00	3,30	5,68	7,33	3,02	4,31	24,48		660113,045	5001056,020
2,81	3,23	4,81	5,96	2,76	3,20	15,39		659947,005	5001454,378
4,04	4,25	8,32	7,91	3,67	4,23	35,24		660010,355	5001286,353
3,72	4,25	10,50	7,67	2,98	4,69	49,26		660013,154	5001280,862
2,40	3,40	4,80	6,67	3,17	3,50	16,80	9	660015,173	5001275,375
3,15	5,01	8,33	6,82	2,83	3,99	33,27	8	660131,559	5001017,109
2,70	3,30	5,42	5,97	3,82	2,15	11,66		660134,906	5001012,937
2,70	3,80	7,42	7,53	2,90	4,63	34,39		659989,649	5001336,189
2,60	3,00	4,82	6,23	3,29	2,94	14,16		659987,718	5001342,227
2,50	3,50	5,31	6,04	2,81	3,24	17,18		659963,351	5001403,014
2,44	3,85	4,12	6,36	2,87	3,50	14,42		660003,028	5001302,891
3,22	3,69	7,66	7,06	3,29	3,77	28,89	9	659961,042	5001408,714
3,70	4,60	8,26	7,70	3,35	4,34	35,89		660089,751	5001104,529
3,28	3,54	6,90	7,89	3,39	4,50	31,03		660137,237	5001007,295
3,56	4,54	9,71	8,31	3,44	4,88	47,35		660087,256	5001109,771
2,88	4,72	8,48	7,05	3,50	3,55	30,14		660061,049	5001170,593
2,60	2,80	3,96	7,11	2,74	4,37	17,32	8,0	660100,331	5001170,333
2,43	3,85	4,16	11,36	3,53	7,84	32,60	0,0	660102,787	5001002,172
2,60	3,00	4,32	6,38	3,46	2,93	12,65		660129,325	5001077,021
3,10	4,43	7,70	7,72	3,51	4,21	32,40		660005,775	5001023,332
3,71	3,83	8,44	8,03	3,35	4,68	39,53		660001,066	5001308,606
2,23	4,27	5,72	7,45	3,00	4,45	25,44		660058,605	5001306,000
4,28	4,29	11,78	7,86	2,81	5,06	59,56		660041,549	5001214,799
			6,77					660092,332	5001214,799
2,22 3,70	4,28 3,80	5,21 8,17	7,50	3,27	3,50 4,37	18,24 35,74		659998,465	5001098,846
3,23	3,28							659996,785	5001313,673
		7,19	7,42	3,20	4,21	30,30			
3,76	4,16	7.02	7,92	3,24	4,68	47,51		659992,011	5001330,504
3,10	3,70	7,02	7,15	3,69	3,46	24,28		659956,865	· ·
3,06	3,30	6,40	6,27	3,24	3,03	19,37		659958,822	5001414,803
3,40	4,10	8,81	7,27	3,32	3,95	34,80		660046,753	5001203,849
4,10	4,10	10,63	7,37	2,66	4,71	50,11		660044,435	5001209,297
1,90	2,67	3,15	8,09	2,95	5,14	16,21	6.0	660119,361	5001044,835
3,14	3,88	7,85	8,73	2,78	5,95	46,74	6,0	660121,548	5001039,103
3,40	4,30	10,07	8,32	3,21	5,11	51,49		660123,986	5001033,939
2,64	4,35	7,60	7,09	3,09	4,00	30,43		660140,130	5001000,910
3,50	4,50	10,92	8,00	2,68	5,32	58,12		660027,532	5001247,65
2,50	4,10	5,77	7,64	4,19	3,45	19,91		660029,865	5001242,08
3,80	4,30	11,05	6,47	2,99	3,48	38,47		660031,963	5001236,358
2,81	4,43	6,62	6,82	3,39	3,43	22,71		660054,144	5001187,046
2,30	2,90	4,15	6,31	3,81	2,50	10,36		659965,350	5001397,57

Tabella 5 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,43	3,05	4,61	6,69	3,31	3,38	15,58		659952,066	5001437,433
2,90	3,50	6,82	7,45	2,92	4,53	30,91		660105,813	5001071,596
3,06	3,63	7,25	7,85	3,39	4,45	32,29		660097,467	5001087,861
3,37	3,41	6,02	6,66	2,91	3,75	22,55		660075,589	5001137,244
2,88	4,59	8,41	6,85	2,97	3,88	32,65		660068,025	5001153,477
3,00	3,10	5,06	6,84	3,27	3,56	18,04		660063,583	5001164,864
3,34	4,06	7,41	7,24	3,74	3,50	25,93		660048,975	5001198,010
3,89	4,50	10,14	6,32	2,90	3,42	34,71		660025,272	5001253,402
3,40	3,50	7,59	8,15	2,65	5,51	41,79		660034,521	5001230,852
2,30	2,40	2,61	6,38	3,29	3,09	8,06		659948,922	5001448,675
2,07	2,81	4,06	5,72	2,66	3,06	12,44		659950,360	5001442,869
2,80	3,10	4,58	6,74	3,37	3,37	15,42		659953,783	5001431,802
2,93	3,67	6,55	8,15	2,85	5,30	34,71		659983,645	5001352,769
2,84	3,23	4,95	7,51	3,54	3,97	19,64		659971,922	5001380,645
3,29	4,08	8,05	6,25	3,34	2,91	23,40		659974,308	5001375,414
2,88	3,49	5,90	7,68	3,72	3,95	23,33		659969,652	5001386,529

Tabella 5 - LIFE+ InBioWood, Area Tione B, pioppi 'I-214' di 2,5 anni.

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
16,54	18,05	152,71	36,10	10,60	25,51	3894,87		627435,051	4986439,569
14,45	18,44	136,44	34,60	10,07	24,53	3347,28		627432,194	4986455,622
13,50	14,10	133,12	35,61	11,31	24,30	3234,55		627418,755	4986452,043
12,53	15,95	118,94	34,81	11,49	23,32	2773,32		627401,035	4986450,545
12,52	15,48	117,77	31,72	10,85	20,86	2457,27		627454,586	4986429,062
13,90	15,15	117,51	34,65	11,41	23,24	2730,34		627410,659	4986444,672
14,57	16,07	117,21	34,27	11,65	22,62	2651,76		627396,738	4986442,397
13,40	15,30	112,70	34,40	8,76	25,64	2889,18		627447,384	4986458,250
12,63	14,83	104,37	34,75	9,81	24,94	2603,09		627450,162	4986443,204
12,10	16,70	96,55	30,42	11,30	19,12	1846,13		627389,122	4986434,474
11,19	13,12	95,21	35,34	9,89	25,45	2423,09		627441,289	4986449,013
11,60	13,70	94,55	31,66	8,75	22,91	2165,86		627460,449	4986459,736
11,92	12,26	92,96	34,85	12,25	22,60	2101,27		627415,196	4986428,891
11,10	12,60	89,93	31,40	11,45	19,94	1793,65		627384,872	4986448,355
12,40	13,60	89,08	33,74	12,02	21,73	1935,44		627406,120	4986434,936
12,10	15,90	87,21	34,55	10,62	23,93	2087,02		627445,866	4986433,205
12,14	12,51	87,10	32,42	11,71	20,71	1803,84		627424,583	4986424,358
11,50	12,70	83,26	30,00	11,75	18,25	1519,16		627398,609	4986426,568
11,50	12,50	83,00	29,43	14,57	14,86	1233,21		627445,582	4986410,858
11,58	16,16	82,18	32,80	10,92	21,88	1797,93		627435,281	4986418,264
10,00	13,67	80,45	34,53	11,62	22,90	1842,63		627420,505	4986435,635
10,50	12,80	79,33	30,80	8,28	22,52	1786,35		627464,919	4986446,166
10,08	11,18	77,41	28,70	13,05	15,64	1210,92		627429,528	4986408,362
7,96	15,70	72,17	32,52	11,24	21,27	1535,24		627458,766	4986438,275
9,12	12,69	71,82	33,35	10,69	22,66	1627,51		627440,106	4986425,323
10,60	11,50	70,47	29,02	8,37	20,64	1454,71		627475,662	4986463,966
11,10	11,10	70,15	30,14	12,65	17,48	1226,29		627408,485	4986421,230
9,77	14,47	68,93	33,75	8,14	25,62	1765,85		627455,733	4986451,360
10,70	11,40	64,46	27,41	8,27	19,14	1233,76		627479,633	4986447,754
8,99	11,13	64,36	26,69	12,85	13,84	890,42		627424,100	4986399,766
9,80	11,80	64,26	27,84	8,13	19,71	1266,60		627475,082	4986439,843
10,40	11,70	62,30	29,13	9,99	19,14	1192,42		627469,103	4986431,478
8,26	11,13	61,84	24,29	8,73	15,56	962,29		627489,042	4986442,733
9,50	10,00	61,61	32,28	11,25	21,03	1295,54		627448,056	4986419,156
8,60	11,30	60,67	25,85	9,26	16,59	1006,33	45	627491,226	4986467,058
8,34	15,20	59,51	29,11	8,15	20,95	1246,91		627470,394	4986455,358
8,83	10,85	58,53	25,22	8,91	16,30	954,30	46	627499,263	4986460,891
7,70	12,70	56,02	33,95	11,04	22,90	1283,08		627430,771	4986430,161
9,50	14,20	56,02	29,54	12,68	16,86	944,61		627418,577	4986416,071
8,79	10,19	49,20	26,87	8,58	18,30	900,14		627493,660	4986453,145
9,00	10,00	45,33	27,70	12,25	15,45	700,30		627401,957	4986414,273
7,60	12,00	43,84	26,39	8,81	17,58	770,55		627484,509	4986457,693
11,70	12,10	78,48	28,65	9,13	19,51	1531,38		627413,609	4986407,509

Tabella 6 - Impianto sperimentale AALSEA, Area Valle dell'Oca "A", pioppi 'Neva' di 13,5 anni con 110 m² di superficie produttiva a disposizione da inizio ciclo produttivo.

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
12,09	16,39	128,21	34,19	8,36	25,83	3311,41		627438,486	4986488,100
12,94	15,54	124,77	34,08	9,06	25,02	3121,62		627405,348	4986496,041
14,33	14,69	123,83	34,17	8,17	26,00	3219,58		627433,830	4986502,359
13,36	14,03	121,89	35,22	10,15	25,07	3056,03		627408,155	4986481,804
14,25	16,02	119,82	33,38	7,26	26,12	3130,06		627415,279	4986514,559
12,31	15,09	119,64	34,04	8,64	25,40	3039,21		627398,142	4986525,293
9,26	15,06	70,31	30,12	10,90	19,22	1351,71		627370,606	4986505,902
10,60	11,60	74,68	29,25	10,90	18,35	1370,68		627366,412	4986520,082
9,42	13,07	74,02	31,58	10,34	21,24	1572,04		627386,007	4986509,016
10,70	13,00	78,56	28,75	10,29	18,46	1449,90		627427,503	4986469,863
11,99	12,18	81,13	29,04	7,94	21,11	1712,33		627471,719	4986479,318
11,50	11,95	84,45	31,89	7,81	24,08	2033,89		627457,391	4986476,558
7,88	10,15	39,60	27,26	9,38	17,88	708,21		627358,393	4986550,763
13,00	14,60	89,85	31,07	10,66	20,41	1833,84		627378,311	4986478,598
11,90	13,16	89,68	32,41	9,22	23,18	2079,14		627381,637	4986523,049
11,11	14,21	93,10	33,58	11,03	22,54	2098,85		627412,756	4986467,872
11,95	14,27	96,42	33,37	10,30	23,07	2224,51		627390,128	4986494,499
11,06	13,45	95,32	28,69	10,26	18,43	1757,13		627362,521	4986536,533
14,01	16,96	103,08	34,02	10,96	23,06	2376,92		627397,981	4986464,561
11,60	12,70	100,94	30,50	11,21	19,29	1946,83		627381,572	4986463,679
11,26	15,80	100,86	32,72	7,08	25,64	2586,55		627454,085	4986490,054
13,50	14,50	98,84	34,88	9,56	25,32	2502,33		627423,948	4986484,991
10,10	17,70	97,32	33,21	10,41	22,80	2218,99		627395,392	4986479,042
12,70	15,00	111,30	33,48	9,16	24,33	2707,37		627400,953	4986511,923
12,90	14,30	106,98	34,29	8,22	26,07	2789,18		627443,338	4986473,191
12,20	13,90	105,30	31,19	10,81	20,38	2146,01		627374,297	4986491,391
13,40	16,70	117,09	33,69	8,24	25,46	2980,53		627419,505	4986498,964

Tabella 7 - Impianto sperimentale AALSEA, Area Valle dell'Oca "A", pioppi 'Neva' di 13,5 anni con 222 m² di superficie produttiva a disposizione a seguito di un diradamento effettuato all'inizio dell'undicesimo anno (2,5 anni con maggiore superficie a disposizione).

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
3,59	5,55	10,07	16,47	6,96	9,52	95,83		627720,221	4986605,072
7,37	11,07	35,52	16,34	6,78	9,56	339,46		627721,785	4986625,274
5,00	6,10	13,14	15,03	2,58	12,44	163,46		627651,019	4986680,087
3,72	6,36	13,84	17,21	5,02	12,19	168,78		627697,356	4986715,738
6,22	8,10	27,12	14,96	7,23	7,73	209,69		627697,761	4986620,124
2,70	3,30	4,58	11,65	9,07	2,58	11,82		627652,022	4986708,088
3,96	6,82	14,31	12,59	4,24	8,35	119,46		627844,110	4986704,271
3,90	4,40	8,67	13,29	2,04	11,25	97,57		627687,371	4986638,241
6,50	6,80	21,07	16,62	2,44	14,19	298,88		627755,129	4986679,682
4,16	6,57	18,92	13,35	4,49	8,86	167,59		627728,926	4986641,092
2,61	3,07	4,81	13,56	4,62	8,94	43,02		627667,238	4986706,376
2,50	3,90	6,03	7,46	5,08	2,37	14,31		627727,374	4986636,657
5,70	7,04	24,24	14,74	3,64	11,10	269,16		627765,720	4986634,292
5,71	6,23	19,12	14,58	2,20	12,37	236,59		627706,156	4986625,175
3,00	4,00	6,64	8,51	2,42	6,10	40,49		627723,703	4986632,506
7,26	8,54	35,55	16,33	2,19	14,14	502,78		627737,184	4986628,993
3,35	4,28	8,31	8,94	7,00	1,94	16,14		627872,682	4986673,277
2,36	2,95	4,21	9,41	3,01	6,40	26,95		627732,124	4986626,466
2,37	3,45	4,82	8,42	2,58	5,83	28,11		627747,685	4986622,503
2,35	4,27	6,09	11,20	2,30	8,90	54,19		627663,378	4986654,622
4,10	6,52	12,71	15,30	4,90	10,39	132,08		627717,570	4986723,887
3,46	4,34	6,94	13,18	5,66	7,52	52,18		627750,840	4986631,267
3,72	4,77	9,82	13,04	2,84	10,21	100,23		627642,075	4986686,051
1,82	3,04	4,00	10,27	8,88	1,38	5,53		627720,760	4986805,703
4,10	4,60	7,84	14,08	9,48	4,61	36,13		627706,182	4986637,384
3,90	4,60	10,30	11,31	2,63	8,68	89,37		627779,511	4986638,061
4,09	6,31	13,75	15,43	8,31	7,12	97,90		627701,811	4986639,821
7,57	8,65	36,72	16,62	3,27	13,36	490,40		627693,084	4986684,175
3,08	4,90	6,78	14,46	4,55	9,90	67,13		627734,939	4986692,161
3,27	6,04	9,89	16,56	5,44	11,12	109,98		627671,819	4986659,731
2,59	4,08	6,37	11,56	5,61	5,95	37,88		627738,464	4986654,088
5,20	5,70	17,95	14,84	7,10	7,74	138,91		627684,758	4986652,275
5,43	7,20	22,93	14,33	4,00	10,33	236,80		627730,112	4986658,800
2,32	3,04	4,32	10,62	3,93	6,69	28,89	20	627669,724	4986686,375
5,24	7,18	18,54	16,04	3,20	12,84	238,07		627706,805	4986686,439
4,03	7,30	11,67	12,64	2,83	9,81	114,44		627690,810	4986660,145
2,70	3,20	5,99	12,08	7,81	4,27	25,58	18	627645,466	4986653,930
4,20	4,40	7,72	13,27	2,04	11,22	86,66		627674,026	4986646,756
2,40	2,70	4,06	8,01	2,85	5,17	20,98		627677,754	4986643,859
3,23	4,58	8,50	15,78	6,85	8,92	75,83		627661,151	4986644,587
2,34	3,61	4,43	9,95	7,41	2,54	11,25		627654,335	4986649,121
2,88	4,02	7,58	12,79	5,93	6,86	51,98		627656,720	4986647,663
4,20	4,30	10,50	13,22	7,44	5,78	60,72		627646,321	4986676,969
3,90	4,20	10,63	11,07	7,43	3,64	38,70		627657,541	4986669,233
5,50	8,70	26,61	19,35	5,29	14,05	373,98		627744,707	4986660,833
2,55	3,52	5,78	9,92	4,35	5,57	32,17		627755,197	4986640,927
3,30	3,70	6,46	14,85	5,64	9,21	59,48		627666,133	4986640,197
4,10	4,40	9,63	8,55	4,68	3,87	37,24		627747,756	4986628,958
4,40	6,83	14,53	12,48	4,08	8,39	121,96		627797,050	4986734,227
3,74	8,88	16,39	14,19	5,89	8,29	135,96		627732,277	4986644,571

Tabella 8 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,40	4,20	7,26	10,20	6,29	3,91	28,36		627724,837	4986642,963
4,84	7,01	17,60	13,57	2,48	11,09	195,21		627698,621	4986691,865
6,50	7,90	26,12	17,32	4,69	12,64	330,03		627747,533	4986646,383
6,40	7,30	23,93	15,85	3,93	11,92	285,16		627734,938	4986667,467
2,73	7,48	12,53	15,98	4,47	11,51	144,20		627714,276	4986609,703
4,30	5,47	9,72	16,40	2,05	14,35	139,48		627710,416	4986621,528
3,30	4,00	6,92	9,56	4,07	5,49	38,01		627716,010	4986619,997
5,10	6,00	15,74	17,38	6,58	10,80	169,94		627701,978	4986616,529
6,61	7,86	26,15	15,96	2,96	13,00	339,92		627724,796	4986674,066
5,00	5,00	15,74	11,68	4,78	6,90	108,59		627770,185	4986619,428
6,45	8,49	19,46	13,34	8,51	4,83	94,09		627740,551	4986613,787
5,78	8,50	23,83	15,86	3,15	12,71	302,78		627757,142	4986615,687
2,58	4,49	7,24	8,91	4,66	4,24	30,73		627788,068	4986619,730
7,13	9,35	34,21	18,39	3,44	14,95	511,58		627695,671	4986667,079
2,77	3,89	5,28	12,34	3,81	8,53	45,05		627820,095	4986672,904
6,39	8,13	26,81	17,27	3,71	13,56	363,57		627688,486	4986698,409
3,50	5,20	8,71	14,14	2,31	11,83	103,05		627734,062	4986606,835
3,58	4,74	9,27	12,66	6,04	6,61	61,32		627728,603	4986599,649
6,50	6,70	21,68	14,94	6,91	8,03	174,06		627666,347	4986663,780
3,90	5,60	10,13	14,10	4,37	9,72	98,48		627771,027	4986668,330
5,35	7,19	17,76	16,01	3,89	12,11	215,16		627761,993	4986674,166
3,74	4,13	9,16	11,61	7,67	3,93	36,04		627750,945	4986608,065
4,50	6,30	12,87	14,91	4,92	10,00	128,67		627658,396	4986693,842
4,00	5,00	11,40	13,27	3,79	9,48	108,09		627676,065	4986680,686
4,40	7,00	14,32	15,74	5,22	10,52	150,60		627791,480	4986655,060
4,95	6,93	16,91	17,61	4,05	13,55	229,19		627672,376	4986695,110
5,91	8,43	32,19	17,08	4,74	12,35	397,51		627761,167	4986648,637

Tabella 8 - Impianto sperimentale AALSEA, Area Valle dell'Oca "B", varie specie a ciclo medio-lungo (farnia, pero, noce, tiglio, ciavardello) di 13,5 anni con 49 m² di superficie produttiva a disposizione divenuti 110 m² a seguito dell'utilizzazione di piante di pioppo effettuata prima dell'inizio del decimo anno del ciclo produttivo (4,5 anni con maggiore superficie a disposizione).

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
6,92	13,66	43,55	28,88	15,27	13,62	593,04		630623,141	4988985,550
7,20	9,70	31,55	29,74	14,75	14,99	472,87		630623,664	4988965,963
10,40	11,50	43,54	29,00	14,49	14,51	631,84	40	630623,813	4988951,431
5,91	10,88	32,58	28,99	13,86	15,14	493,22		630622,226	4988997,406
5,51	12,92	41,61	29,32	13,11	16,21	674,64		630622,382	4988981,415
6,67	10,12	36,66	29,21	12,53	16,68	611,49		630621,685	4989001,059
7,80	13,54	51,81	29,87	13,89	15,98	827,92		630619,998	4989025,119
5,79	15,17	46,66	29,53	15,36	14,17	661,18		630620,454	4989020,369
6,80	11,70	43,91	29,53	15,42	14,11	619,54		630622,575	4988993,562
5,85	10,48	36,50	29,08	12,89	16,19	590,92		630623,432	4988977,068
5,95	14,24	40,05	29,28	14,16	15,12	605,66		630621,386	4989016,966
6,25	8,72	22,50	27,88	17,50	10,38	233,54		630625,750	4988969,562
8,80	11,60	46,40	29,42	12,76	16,65	772,75		630624,849	4988957,096
7,47	12,21	42,65	29,55	14,46	15,09	643,55		630622,214	4989013,359
8,20	10,40	41,78	29,20	12,66	16,54	691,10		630624,543	4988961,649
7,20	11,40	37,79	29,08	13,35	15,73	594,42		630622,014	4988989,353
5,31	10,08	24,99	29,05	14,98	14,07	351,56		630622,947	4988972,903
7,42	13,62	44,30	29,42	16,47	12,96	573,98		630621,985	4989004,915
6,43	13,05	46,50	29,91	14,82	15,09	701,77		630621,235	4989008,792
6,90	13,40	49,23	30,00	14,72	15,28	752,25		630610,517	4988987,998
5,60	11,90	31,47	30,15	13,91	16,25	511,33		630608,230	4989016,357
6,76	10,84	35,27	30,41	13,11	17,30	610,30		630611,045	4988967,284
				<u> </u>		887,23		•	
7,27 7,20	15,21 10,60	53,33 35,85	30,29 29,69	13,66 13,27	16,64 16,42	588,63		630611,087 630611,304	4988975,483 4988963,076
								-	
7,00	12,70	45,47	30,35	15,74	14,61	664,32		630609,697	4988993,216
5,79	10,83	29,01	30,19	18,70	11,49	333,23		630609,710	4989020,353
5,10	10,30	25,60	29,58	13,51	16,07	411,40		630611,511	4988958,747
6,43	11,75	34,04	29,91	13,87	16,05	546,21		630608,649	4989001,279
5,46	11,08	29,87	30,54	11,72	18,82	562,30		630610,597	4989004,740
6,74	11,50	37,67	30,33	14,61	15,73	592,40		630609,915	4988996,985
6,84	13,07	42,33	30,04	14,39	15,64	662,20		630610,979	4988983,668
7,00	10,50	32,33	30,43	14,52	15,91	514,31		630610,084	4989008,450
7,40	10,80	36,15	29,62	14,47	15,15	547,67		630613,880	4988953,634
5,37	8,74	27,94	30,07	15,36	14,71	411,05		630612,778	4988947,263
6,50	10,25	34,20	29,58	18,15	11,43	390,96	46	630613,564	4988942,751
7,59	12,81	37,53	29,77	16,26	13,51	507,07		630610,628	4988979,512
6,20	11,20	32,64	30,16	12,54	17,62	575,16		630609,665	4989012,662
6,81	13,13	41,84	30,27	17,42	12,84	537,43		630612,443	4988971,414
5,00	8,10	21,03	29,51	14,93	14,58	306,61		630594,753	4988982,515
6,80	10,00	30,42	29,23	14,90	14,33	435,97		630597,160	4988953,752
6,30	8,30	24,11	29,37	17,49	11,89	286,56		630595,866	4988975,194
5,40	6,42	15,53	28,84	16,67	12,17	188,96		630598,073	4988958,111
5,19	7,07	18,75	29,62	14,84	14,78	277,17		630593,923	4988998,271
5,50	9,89	27,19	29,32	14,92	14,40	391,62		630598,409	4988942,094
4,41	9,16	24,52	29,55	15,70	13,85	339,56		630595,600	4988979,032
5,80	8,80	29,50	30,07	16,71	13,36	394,05		630595,833	4988986,212
7,83	8,23	26,87	28,57	14,67	13,90	373,57		630597,227	4988938,344
4,81	8,06	20,81	29,02	16,85	12,17	253,21		630598,504	4988946,291
4,56	8,88	24,21	28,29	16,43	11,86	287,12	38	630600,096	4988932,444
6,60	10,40	27,04	29,10	13,61	15,49	418,89		630598,433	4988949,995

Tabella 9 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordina	ates (x;y)
6,80	9,70	29,06	28,80	12,07	16,73	486,28		630597,979	4988961,907
6,70	8,00	21,91	28,96	18,31	10,65	233,44		630597,456	4988966,559
6,30	9,20	31,93	29,65	14,08	15,56	496,97		630595,844	4988990,825
4,50	8,30	18,59	29,34	17,06	12,28	228,34		630595,361	4988971,732
5,34	9,00	25,63	29,32	14,89	14,43	369,73		630595,466	4988995,050
7,25	9,32	28,47	28,51	16,30	12,21	347,54		630588,609	4988958,867
5,90	8,17	24,37	28,47	17,81	10,66	259,85		630589,127	4988946,404
6,34	8,87	28,92	29,79	15,32	14,47	418,50		630588,219	4988938,671
5,29	9,20	22,20	28,06	15,05	13,01	288,76		630586,947	4988949,754
6,82	9,63	37,54	29,13	14,84	14,29	536,54	44	630589,274	4988929,353
5,50	8,90	24,61	28,25	13,40	14,85	365,46		630588,049	4988942,920
5,18	9,29	31,99	27,84	12,34	15,51	496,05		630587,181	4988986,353
5,90	10,90	31,82	27,92	11,26	16,66	530,03		630586,866	4988971,677
5,80	9,80	27,95	27,85	13,51	14,34	400,85		630586,953	4988982,138
5,64	9,08	26,36	27,85	16,94	10,91	287,58		630586,552	4988978,816
6,50	10,40	32,12	28,34	13,89	14,45	464,22		630587,362	4988975,343
7,23	9,67	38,21	28,85	14,57	14,28	545,66		630587,255	4988954,228
5,40	9,50	25,09	28,07	13,85	14,22	356,73		630586,204	4988994,412
6,10	11,07	28,89	28,19	13,29	14,90	430,50		630586,514	4988990,533
6,50	9,20	37,86	28,11	14,13	13,98	529,26		630586,914	4988967,039
5,22	9,52	24,97	28,69	13,71	14,98	374,11		630589,263	4988934,376
6,20	9,70	29,79	27,54	16,24	11,31	336,87		630587,337	4988962,654

Tabella 9 - Impianto sperimentale AALSEA, Area Panguaneta, pioppo 'I-214' di 9,5 anni con 54 m² di superficie produttiva a disposizione (4 x 13,5 m).

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
6,438	9,448	38,670	28,002	13,876	14,126	546,259		630583,450	4989025,236
6,698	11,846	37,550	28,096	13,115	14,981	562,532		630585,033	4989021,076
6,906	9,735	31,250	28,035	12,361	15,674	489,806		630583,895	4989043,052
6,616	10,588	38,670	27,716	13,368	14,348	554,826		630582,169	4989038,210
8,379	10,246	47,250	28,214	11,236	16,978	802,187		630582,034	4989061,061
6,636	8,941	34,380	27,894	14,941	12,953	445,308		630584,125	4989034,009
6,200	10,500	35,590	28,369	13,339	15,030	534,907		630585,010	4989012,707
5,800	9,000	28,510	27,830	13,707	14,123	402,658		630586,950	4988998,547
7,037	10,892	40,540	28,160	11,771	16,389	664,402		630581,277	4989056,276
6,074	9,107	29,160	28,334	13,380	14,954	436,057		630581,242	4989051,664
6,900	10,600	34,540	27,999	12,858	15,141	522,974		630582,881	4989047,360
6,780	9,681	33,670	28,355	14,104	14,251	479,828		630584,377	4989007,833
6,607	8,533	32,460	28,548	15,460	13,088	424,851		630585,666	4989002,940
6,100	12,100	38,380	28,222	14,951	13,271	509,349		630584,500	4989016,598
6,600	9,100	30,510	28,245	13,214	15,031	458,605		630583,496	4989029,679
6,900	12,600	44,380	29,026	11,170	17,856	792,453		630592,606	4989061,006
5,842	8,592	24,030	29,119	13,963	15,156	364,189		630591,845	4989065,589
7,000	9,900	37,050	29,982	13,117	16,865	624,838		630593,537	4989007,324
5,088	9,925	28,320	29,949	14,539	15,410	436,416		630593,547	4989017,084
6,500	7,800	29,670	29,753	15,167	14,586	432,762	·	630594,498	4989025,299

Tabella 10 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
7,200	11,100	32,380	29,326	14,445	14,881	481,850		630595,500	4989021,028
6,821	12,721	41,530	29,784	14,493	15,291	635,049		630591,955	4989052,572
8,800	11,000	45,000	29,533	13,885	15,648	704,171		630592,583	4989047,364
6,338	12,934	40,220	29,047	13,401	15,646	629,297		630594,911	4989002,024
5,900	8,300	23,930	29,199	15,435	13,764	329,381		630591,780	4989034,555
6,044	9,963	27,720	29,438	13,647	15,791	437,727		630593,057	4989041,879
7,039	13,151	49,330	29,202	12,625	16,577	817,749		630595,191	4989030,437
6,113	8,972	33,010	29,131	15,652	13,479	444,927		630593,870	4989012,205
5,512	11,729	31,570	29,594	15,524	14,070	444,178		630592,853	4989038,465
5,693	12,678	32,960	28,902	12,980	15,922	524,797		630592,321	4989057,000
7,796	11,656	43,130	30,969	15,315	15,654	675,136		630607,720	4989041,280
7,483	11,352	44,030	30,700	15,242	15,458	680,624		630606,771	4989036,361
6,319	11,325	33,190	30,257	14,511	15,746	522,607		630608,707	4989032,535
4,995	10,187	26,940	30,362	14,843	15,519	418,075		630607,690	4989055,963
6,454	9,802	31,270	30,545	15,904	14,641	457,835		630607,682	4989069,217
7,100	10,200	39,090	30,505	13,703	16,802	656,796		630607,648	4989051,346
6,900	7,400	27,040	30,316	15,912	14,404	389,473		630605,977	4989077,750
6,200	11,700	43,020	30,360	12,389	17,971	773,120		630607,458	4989046,009
5,218	8,510	23,550	30,306	13,483	16,823	396,172		630605,105	4989086,737
6,255	9,190	27,840	30,246	15,324	14,922	415,423		630606,810	4989073,255
6,300	8,400	23,500	30,497	15,403	15,094	354,717		630605,111	4989082,475
6,872	11,302	39,650	30,315	15,645	14,670	581,667		630607,986	4989064,605
5,954	8,860	26,420	30,240	13,027	17,213	454,776		630606,807	4989060,082
6,900	9,908	35,090	29,929	15,539	14,390	504,954		630608,974	4989024,333
4,513	10,877	24,180	29,836	15,521	14,315	346,141		630607,953	4989028,036
5,422	11,773	36,810	29,445	13,859	15,586	573,707		630619,259	4989037,477
7,300	12,000	56,420	30,202	14,740	15,462	872,340		630618,484	4989042,166
5,700	13,500	39,960	30,240	15,945	14,295	571,231		630618,939	4989033,912
6,566	10,880	36,820	30,378	15,858	14,520	534,642		630617,700	4989056,033
6,140	14,060	53,220	30,297	15,540	14,757	785,385		630615,842	4989087,581
7,800	11,700	43,880	30,062	11,694	18,368	805,976		630616,724	4989051,727
6,606	11,275	43,620	30,371	12,895	17,476	762,284		630616,623	4989064,632
7,800	12,100	51,980	30,036	14,872	15,164	788,216		630618,678	4989069,362
6,161	12,613	46,090	30,081	12,131	17,950	827,326		630615,575	4989078,321
7,105	12,241	46,890	29,756	14,048	15,708	736,557		630619,500	4989029,568
7,200	14,400	54,100	30,422	10,347	20,075	1086,072		630616,388	4989082,790
7,900	12,500	47,890	29,517	12,462	17,055	816,766		630614,894	4989092,640
6,400	13,500	49,400	30,187	14,023	16,164	798,491		630618,024	4989060,032
5,449	13,158	35,160	30,146	14,163	15,983	561,953		630615,129	4989074,094
5,906	12,388	42,200	30,368	14,743	15,625	659,384		630618,716	4989047,746

Tabella 10 - Impianto sperimentale AALSEA, Area Panguaneta, pioppo 'l-214' di 9,5 anni con 60,7 m 2 di superficie produttiva a disposizione (4,5 x 13,5 m).

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
6,300	11,200	38,370	29,927	11,671	18,256	700,478		630614,401	4989101,248
6,700	11,600	40,230	28,015	12,136	15,879	638,813		630613,177	4989125,868
4,325	8,721	18,390	26,517	11,931	14,586	268,237		630610,646	4989145,434
7,200	9,600	36,250	29,594	11,432	18,162	658,361		630613,559	4989106,348
7,000	7,800	27,770	27,472	10,694	16,778	465,938		630611,660	4989131,318
8,200	10,300	44,320	29,630	11,756	17,874	792,180		630614,496	4989111,342
6,288	11,481	30,980	30,180	14,059	16,121	499,428		630614,751	4989097,460
5,058	7,357	16,980	26,632	12,364	14,268	242,276		630612,661	4989141,119
6,500	8,100	28,790	26,535	10,499	16,036	461,681		630612,301	4989136,483
6,234	8,310	26,820	28,359	12,287	16,072	431,047		630612,819	4989121,691
7,235	10,368	39,730	28,385	13,098	15,287	607,349		630613,574	4989116,836
6,700	8,400	32,330	27,526	12,818	14,708	475,521		630608,703	4989151,294
5,137	9,379	22,780	29,889	12,116	17,773	404,860		630602,748	4989097,439
6,839	11,420	48,040	27,454	13,619	13,835	664,623		630603,976	4989145,881
6,393	10,646	35,530	28,763	13,810	14,953	531,275		630604,363	4989105,997
5,667	8,708	28,950	27,150	14,025	13,125	379,974		630603,007	4989141,033
5,591	8,256	24,680	30,100	14,115	15,985	394,517		630606,287	4989091,246
6,959	10,849	39,700	28,895	12,446	16,449	653,042		630603,398	4989121,760
7,577	10,775	33,180	28,497	14,989	13,508	448,206		630604,157	4989116,500
6,868	10,428	36,650	28,434	10,936	17,498	641,316		630604,016	4989127,043
7,643	8,765	30,650	28,755	11,849	16,906	518,177		630605,051	4989111,173
6,001	9,746	38,850	27,877	12,885	14,992	582,432		630602,630	4989131,725
5,700	9,800	23,990	29,270	14,851	14,419	345,907		630604,981	4989100,906
6,500	7,900	29,450	27,351	10,838	16,513	486,304		630602,249	4989100,900
	8,400	28,590		11,000	17,440	-		630600,289	4989150,303
6,600 6,325	9,796	34,570	28,440 29,132	12,950	16,182	498,608 559,428		630590,509	4989099,683
						-			4989099,083
8,300	8,800	30,210	29,045	10,842	18,203	549,914		630590,536 630591,400	
6,500	9,500	33,990	29,464	12,288	17,176	583,802		,	4989076,051 4989139,981
5,168	11,646	29,090	29,745	16,075	13,670	397,672		630588,922	
7,300	13,800	54,410	28,723	12,264	16,459	895,524		630589,925	4989144,940
5,531	12,454	32,080	28,681	10,583	18,098	580,592		630591,192	4989120,996
6,000	6,700	21,220	28,901	10,000	18,901	401,082		630588,629	4989135,168
4,200	10,200	20,250	28,955	10,548	18,407	372,749		630591,712	4989085,413
7,200	8,000	24,360	28,796	15,568	13,228	322,233		630589,871	4989094,738
6,100	10,900	35,860	28,252	18,806	9,446	338,719		630587,273	4989150,144
6,256	10,796	30,600	29,333	14,039	15,294	467,997		630591,590	4989081,450
6,600	11,400	33,630	29,095	15,220	13,875	466,603		630590,363	4989106,286
7,200	10,500	34,680	29,007	11,913	17,094	592,816		630589,689	4989089,675
7,307	7,951	22,820	28,946	14,272	14,674	334,853		630588,293	4989131,351
7,500	11,000	44,520	29,084	12,049	17,035	758,388		630591,082	4989070,597
8,300	10,600	47,090	29,008	12,951	16,057	756,103		630591,122	4989126,133
7,300	10,066	31,060	28,878	15,393	13,485	418,842		630590,686	4989116,626
5,538	11,773	44,300	28,560	14,054	14,506	642,630		630579,650	4989125,205
5,640	11,686	43,140	28,611	15,090	13,521	583,314		630579,407	4989100,299
10,000	10,800	51,110	28,030	15,955	12,075	617,140		630579,991	4989105,653
6,541	14,598	45,330	27,934	10,776	17,158	777,780		630579,971	4989095,355
6,400	11,100	37,760	27,348	11,119	16,229	612,801		630580,614	4989085,229
5,100	9,500	29,890	28,825	12,359	16,466	492,165		630580,356	4989120,730
6,320	11,036	40,390	27,626	14,564	13,062	527,576		630580,836	4989080,868
7,400	11,800	53,390	28,863	14,166	14,697	784,669		630579,561	4989130,607

Tabella 11 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordina	ates (x;y)
8,574	12,204	56,210	28,307	12,747	15,560	874,648		630578,066	4989141,716
7,226	11,134	43,200	27,546	12,271	15,275	659,886		630579,573	4989090,442
5,800	11,100	43,470	28,991	9,997	18,994	825,686		630579,280	4989136,040
8,900	9,400	44,880	27,534	14,555	12,979	582,475		630575,998	4989147,380
6,400	10,800	34,120	28,429	12,620	15,809	539,401		630579,754	4989116,779
5,200	9,400	27,110	27,941	14,092	13,849	375,458		630582,557	4989071,340
6,935	9,200	37,290	27,797	12,533	15,264	569,208		630581,059	4989066,914
6,800	10,800	39,560	28,979	13,476	15,503	613,315		630579,511	4989112,011
7,000	10,500	39,670	87,663	73,492	14,171	562,178		630580,486	4989076,004

Tabella 11 - Impianto sperimentale AALSEA, Area Panguaneta, pioppo 'I-214' di 9,5 anni con 67,5 m² di superficie produttiva a disposizione (5 x 13,5 m).

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
4,00	4,80	13,51	20,78	8,68	12,10	163,50		685131,310	5000315,147
4,51	6,22	10,11	19,43	9,52	9,92	100,25		685225,379	5000365,103
2,50	4,00	4,75	19,98	7,44	12,54	59,56		685223,637	5000375,870
2,29	3,90	4,06	18,99	9,77	9,22	37,43		685223,221	5000382,860
5,00	6,00	15,04	19,72	6,95	12,77	192,12		685176,789	5000368,214
3,71	4,89	7,77	19,06	9,71	9,35	72,65		685095,034	5000310,732
2,00	2,30	1,73	16,67	7,92	8,76	15,15		685170,376	5000306,053
3,50	4,80	10,44	17,66	6,80	10,86	113,41		685085,126	5000371,456
2,24	3,37	4,09	16,07	8,83	7,24	29,63		685174,612	5000375,699
5,88	6,08	19,87	20,02	9,41	10,60	210,68		685168,655	5000309,121
3,90	4,99	9,76	17,77	6,05	11,72	114,42		685085,201	5000377,968
3,58	4,58	9,57	21,14	11,93	9,22	88,19		685132,109	5000309,250
2,70	4,90	5,76	17,77	5,95	11,82	68,11		685082,289	5000383,299
5,03	7,36	21,76	20,47	9,80	10,67	232,19		685150,035	5000313,454
5,10	5,30	12,40	19,33	6,63	12,71	157,58		685049,381	5000366,965
3,25	3,63	5,01	19,63	9,72	9,91	49,67		685114,262	5000306,912
3,02	4,92	5,87	17,99	9,84	8,15	47,83		685150,939	5000307,109
4,67	5,63	13,88	20,53	9,69	10,85	150,54		685167,262	5000315,308
3,52	4,72	8,42	18,32	13,35	4,97	41,83		685205,502	5000370,088
3,80	4,70	8,73	18,84	7,62	11,22	97,97		685120,541	5000369,815
4,55	6,71	17,41	19,92	7,30	12,63	219,82		685048,642	5000373,276
3,22	3,97	7,50	18,78	8,89	9,89	74,15		685147,991	5000319,513
3,70	4,00	6,53	17,97	6,16	11,81	77,15		685205,566	5000376,324
4,09	6,26	10,91	19,74	6,25	13,49	147,19		685047,315	5000379,016
5,20	5,70	15,44	19,29	4,90	14,38	222,07		685046,153	5000385,065
4,86	6,03	14,96	20,45	11,21	9,24	138,16		685100,396	5000285,572
3,00	3,20	6,88	18,49	13,79	4,69	32,27		685100,759	5000280,847
4,40	5,00	11,92	21,03	8,82	12,20	145,46		685059,137	5000308,862
4,50	4,80	9,97	19,95	9,06	10,89	108,58		685065,788	5000268,321
5,00	5,41	12,02	19,97	9,15	10,82	130,08		685065,160	5000273,880
4,79	5,83	15,68	18,68	8,57	10,11	158,57		685103,185	5000267,888
4,90	5,40	14,22	19,46	9,06	10,39	147,77		685101,949	5000273,983
3,80	4,40	8,48	19,67	9,20	10,47	88,79		685077,553	5000308,828
4,40	5,50	13,99	19,96	8,15	11,81	165,26		685057,701	5000314,267
5,33	6,01	18,98	20,27	7,69	12,58	238,71		685241,931	5000376,237
4,30	5,50	13,26	19,50	8,17	11,33	150,19		685076,239	5000314,178

Tabella 12 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
4,50	5,50	13,10	20,49	11,75	8,74	114,56		685085,691	5000266,290
4,15	4,73	10,81	19,87	9,29	10,58	114,36		685243,435	5000369,654
3,96	6,80	15,14	19,31	9,84	9,46	143,23		685120,277	5000269,771
5,42	5,69	15,21	19,91	6,58	13,33	202,79		685067,440	5000363,151
5,23	5,50	16,49	18,37	5,70	12,67	208,86		685263,397	5000437,688
4,43	5,27	13,15	19,32	9,22	10,10	132,81		685068,612	5000356,880
5,49	5,73	17,53	19,16	9,25	9,91	173,74		685173,935	5000284,860
5,60	5,90	18,98	19,88	8,35	11,52	218,74		685172,572	5000291,120
4,80	5,10	10,97	18,27	6,23	12,05	132,17		685263,273	5000443,756
4,66	5,77	16,14	19,80	7,68	12,11	195,54		685171,764	5000297,860
4,20	5,00	8,66	18,94	8,77	10,17	88,12		685142,235	5000355,786
4,09	5,41	11,73	17,33	3,82	13,51	158,46		685226,490	5000463,412
4,83	6,86	16,61	21,28	9,20	12,08	200,57		685165,319	5000326,845
4,70	5,90	14,37	16,98	3,84	13,14	188,85		685225,987	5000457,285
4,60	4,90	14,25	17,90	4,39	13,51	192,48		685045,189	5000391,109
4,40	4,80	13,35	20,47	8,63	11,84	158,12		685081,781	5000284,264
2,12	2,42	2,59	19,84	8,16	11,69	30,26		685166,869	5000328,705
5,46	7,49	21,56	18,72	4,43	14,28	307,92		685261,693	5000462,591
3,80	5,00	10,23	20,23	8,42	11,81	120,84		685079,514	5000296,786
3,49	4,49	8,93	19,77	9,26	10,51	93,86		685078,412	5000302,608
3,04	4,73	7,60	14,21	4,61	9,60	72,97	24	685292,123	5000487,484
2,51	3,13	4,76	18,48	16,49	1,99	9,46		685096,205	5000304,733
4,30	4,70	11,50	20,66	12,16	8,50	97,76		685136,251	5000289,679
4,32	4,55	9,76	19,40	9,17	10,23	99,82		685133,450	5000302,640
5,70	7,10	22,90	18,21	5,33	12,88	295,04		685062,266	5000394,163
7,30	7,40	24,37	21,30	7,32	13,98	340,77		685062,447	5000291,146
5,40	5,50	14,21	17,44	4,83	12,61	179,20		685062,828	5000387,556
2,83	4,50	6,47	17,47	7,61	9,86	63,80		685171,307	5000393,749
5,67	6,46	15,29	19,72	8,74	10,98	167,90		685061,019	5000296,691
5,00	5,20	15,39	21,29	9,90	11,39	175,31		685060,022	5000303,721
3,80	4,70	9,66	15,78	4,88	10,89	105,23		685168,290	5000418,934
5,10	6,60	16,89	19,78	5,65	14,13	238,59		685229,157	5000438,526
5,50	5,70	18,81	19,36	8,78	10,57	198,88		685066,642	5000150,520
4,25	6,32	16,69	17,80	7,80	9,99	166,80		685124,427	5000257,606
3,50	4,60	9,84	16,42	8,60	7,82	76,92		685124,265	5000251,349
6,31	8,96	29,85	16,64	8,61	8,03	239,73		685126,231	5000231,515
4,21	6,11	16,88	19,26	9,49	9,77	164,92		685104,419	5000213,303
4,19	5,76	14,78	19,21	8,81	10,40	153,71		685105,840	5000254,711
4,44	6,63	15,34	18,95	7,95	11,00	168,69		685106,758	5000249,037
4,80	5,50	13,19	18,83	9,58	9,25	121,97		685156,515	5000276,180
2,90	3,40	4,52	18,60	12,35	6,25	28,27		685138,375	5000270,180
4,50	5,90	18,71	18,30	9,82	8,48	158,71		685157,437	5000272,423
5,20	5,90	15,01	20,09	8,41	11,68	175,35		685136,826	5000284,615
1,50	2,20	1,50	14,12	9,63	4,49	6,73	22	685141,366	5000284,013
3,80	4,68	10,51	18,07	8,51	9,56	100,48		685137,830	5000280,167
5,14	5,72	11,99	20,28	10,63	9,56	115,70		685163,794	5000278,301
3,70	4,30	9,95			9,58	95,27		685210,909	5000339,513
3,32		5,14	19,31	9,73	10,24	52,65		685161,936	5000338,762
3,32	4,08	6,59	17,88	7,64 8,89	8,85	52,65		685161,936	5000345,000
3,50	3,92 5,40	11,17	17,74 19,36	7,61	11,75	131,24		685123,865	5000331,982

Tabella 12 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
5,02	6,66	19,52	21,23	7,11	14,12	275,70		685051,962	5000349,373
3,59	7,03	12,81	21,06	8,70	12,36	158,40		685056,365	5000326,953
4,20	5,70	12,42	16,50	3,96	12,54	155,73		685279,499	5000466,418
4,80	5,00	10,65	17,11	5,44	11,67	124,27		685279,974	5000459,482
5,44	5,68	18,05	16,48	4,65	11,83	213,46		685045,335	5000397,581
4,23	5,69	11,04	12,98	4,53	8,45	93,30	17	685079,851	5000403,380
4,10	5,50	11,02	16,97	4,05	12,93	142,48		685080,399	5000396,320
4,50	5,81	16,16	17,48	8,60	8,89	143,61		685107,288	5000242,701
2,30	4,20	6,48	16,71	6,40	10,32	66,85		685170,740	5000405,566
3,43	4,62	7,72	14,98	6,54	8,44	65,14		685170,961	5000399,840
3,79	7,27	14,29	19,58	7,38	12,20	174,35		685237,038	5000400,827
5,02	5,74	11,67	19,23	13,60	5,63	65,74		685143,626	5000343,902
5,90	6,90	20,22	20,67	8,00	12,67	256,23		685145,541	5000338,112
5,44	5,70	15,18	20,47	7,56	12,91	195,97		685146,469	5000331,533
4,78	5,13	14,82	20,40	8,28	12,12	179,60		685148,065	5000325,820
3,90	4,30	10,21	19,18	7,86	11,32	115,59		685071,150	5000344,670
4,31	7,54	16,14	20,16	7,53	12,63	203,84		685071,956	5000338,566
3,36	4,34	8,89	20,26	10,62	9,64	85,69		685181,627	5000337,825
4,10	4,50	12,83	18,91	8,85	10,06	129,02		685183,625	5000331,274
4,02	5,30	9,01	19,58	8,40	11,18	100,75		685073,982	5000326,600
3,37	5,43	9,39	18,65	10,95	7,70	72,28		685124,682	5000345,143
4,20	6,78	18,74	19,35	9,07	10,29	192,76		685244,323	5000356,101
3,98	4,21	8,45	18,10	8,90	9,20	77,76		685208,008	5000356,737
3,07	3,85	6,54	18,99	8,57	10,42	68,13		685126,091	5000339,221
4,20	5,00	13,03	19,83	9,44	10,39	135,41		685226,136	5000358,119
4,30	5,60	13,29	17,89	7,10	10,79	143,45		685090,644	5000341,871
3,40	4,20	7,90	19,66	8,37	11,29	89,19		685177,913	5000361,142
4,66	5,34	14,16	18,90	7,49	11,40	161,49		685139,881	5000362,819
4,00	4,60	11,19	18,32	8,58	9,74	108,99		685159,362	5000358,228
3,06	4,06	6,17	18,26	10,93	7,33	45,23		685176,341	5000363,888
3,65	4,82	8,13	17,90	7,27	10,63	86,41		685123,342	5000357,917
4,02	4,47	8,97	17,83	6,53	11,30	101,34		685087,214	5000358,859
2,87	3,16	5,40	16,30	6,48	9,82	53,02		685280,860	5000449,618
4,52	4,95	12,12	19,14	8,34	10,80	130,96		685170,450	5000303,339
4,12	5,38	11,36	16,53	3,94	12,58	142,97		685224,254	5000469,285
4,80	6,00	11,25	19,96	9,67	10,29	115,71		685154,135	5000288,857
5,62	6,24	14,72	17,68	5,60	12,09	177,91		685228,504	5000445,393
3,11	5,16	6,35	17,44	8,85	8,59	54,54		685122,438	5000362,948
3,20	3,40	5,41	19,67	7,11	12,55	67,92		685127,606	5000333,210
3,36	4,83	10,68	17,57	7,14	10,43	111,40		685085,841	5000365,828
5,43	5,87	15,25	20,01	6,71	13,30	202,81		685050,573	5000355,757
1,40	2,40	1,14	17,21	7,20	10,01	11,41		685129,741	5000333,450
5,50	5,90	15,58	20,29	6,92	13,37	208,37		685050,277	5000361,105
4,15	5,65	14,10	19,56	9,70	9,86	139,00		685227,053	5000351,882
3,69	4,15	7,42	15,12	5,83	9,29	68,92		685294,280	5000479,903
2,20	2,50	3,55	14,94	5,00	9,95	35,32		685293,687	5000483,725
4,50	4,80	10,30	16,67	4,42	12,25	126,21		685276,919	5000478,435
4,10	4,10	8,37	14,28	4,43	9,85	82,45		685275,530	5000484,899
3,50	4,20	9,26	20,65	11,64	9,01	83,44		685055,322	5000332,110
4,73	8,02	19,26	17,75	10,13	7,63	146,86		685174,082	5000278,747

Tabella 12 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordina	ates (x;y)
4,20	5,00	11,99	19,13	9,24	9,89	118,57		685082,660	5000278,466
4,96	5,71	15,08	20,38	11,50	8,87	133,79		685063,912	5000284,398
2,96	4,15	6,28	20,09	7,41	12,68	79,64		685063,993	5000279,696
4,50	4,90	12,10	19,93	8,99	10,94	132,34		685118,558	5000282,219
4,33	4,73	12,85	19,22	9,82	9,40	120,75		685119,234	5000276,902
2,50	3,40	4,00	17,24	7,85	9,39	37,55		685087,891	5000353,175
5,99	6,48	20,41	19,81	7,17	12,63	257,80		685055,282	5000337,289
4,74	5,58	13,78	19,13	8,36	10,77	148,38		685227,629	5000346,389
4,65	5,42	13,95	18,93	8,37	10,56	147,34		685088,513	5000347,693
5,20	6,00	14,06	21,54	7,72	13,82	194,32		685053,563	5000343,470
4,80	6,00	15,54	20,01	7,82	12,18	189,33		685094,093	5000316,819
5,60	6,00	17,86	17,08	4,10	12,98	231,79		685278,796	5000472,250
4,17	4,88	9,11	16,48	5,15	11,33	103,25		685259,076	5000474,569
3,63	6,16	12,32	17,59	4,93	12,66	155,92		685260,859	5000469,103
3,60	4,80	8,24	18,39	7,94	10,45	86,09		685161,065	5000352,289
3,29	4,22	7,29	18,39	8,04	10,35	75,47		685178,383	5000355,636
3,23	4,37	8,78	19,69	8,94	10,75	94,42		685129,377	5000320,468
1,29	2,09	1,37	15,13	8,94	6,19	8,48		685134,485	5000320,387
5,14	7,60	20,12	21,16	8,95	12,21	245,73		685166,456	5000321,590
4,90	5,50	11,30	19,74	8,11	11,63	131,41		685179,773	5000348,897
2,91	3,29	5,54	17,70	14,41	3,29	18,24		685139,736	5000265,470
4,80	4,90	13,86	18,75	10,56	8,19	113,49		685141,139	5000258,849
4,37	7,04	18,89	16,79	12,10	4,70	88,71		685141,993	5000252,813
4,60	5,00	11,74	15,20	9,41	5,78	67,89		685142,835	5000246,353
4,44	6,96	14,93	17,84	8,24	9,61	143,43		685158,564	5000263,381
3,14	3,86	5,80	18,22	9,73	8,49	49,25		685180,299	5000343,997
4,25	5,97	16,03	20,91	8,08	12,83	205,68		685153,291	5000295,358
2,88	3,19	4,84	14,81	4,46	10,35	50,11		685081,465	5000390,887
5,70	5,90	14,19	20,32	10,40	9,92	140,78		685074,809	5000320,428
4,10	4,80	11,73	19,41	15,65	3,76	44,12		685152,438	5000320,120
5,68	6,56	17,89	21,09	9,91	11,18	200,05		685057,044	5000320,500
3,60	3,85	8,75	17,99	9,06	8,93	78,11		685139,377	5000369,106
2,50	4,00	4,99	18,69	12,78	5,91	29,49		685209,465	5000349,620
4,20	5,50	12,58	19,24	10,28	8,95	112,65		685098,670	5000313,020
4,20	4,80	11,93	19,46	15,68	3,78	45,08		685117,051	5000294,089
6,10	6,30	18,11	18,07	5,74	12,33	223,35		685062,611	5000231,536
4,80	5,50	17,69	20,26	12,25	8,01	141,63		685097,669	5000391,310
4,41	4,87	8,10	16,15	7,26	8,89	72,03		685092,608	5000323,291
5,20	5,90	14,83	19,36	8,44	10,92	161,94		685093,229	5000328,389
4,70	5,95	19,04	18,82	10,03	8,78	167,25		685086,243	5000320,583
4,70	4,80	14,23	19,52	8,72	10,81	153,81		685083,697	5000239,330
5,00	5,70	18,38	21,35	9,95	11,40	209,61		685080,582	5000272,171
3,70	4,00	10,06	16,83	8,25	8,58	86,33		685072,790	5000290,104
5,86	6,07	25,50	20,57	6,53	14,04	357,94		685068,636	5000351,714
5,89	7,77	31,66	17,48	4,95	12,53	396,64		685061,618	5000330,780
3,28	3,43	8,17	15,75	6,84	8,91	72,77		685280,726	5000400,341
						· ·			
4,00	5,70	12,94	18,49	6,07	12,41	160,64		685262,696	5000450,243
5,04	6,00	19,64	14,73	4,67	10,07	197,74		685258,085	5000481,183
4,28 3,50	5,08 4,90	12,99 9,73	18,27 18,12	7,64 9,53	10,63 8,58	138,06 83,53		685105,192 685104,862	5000352,338

Tabella 12 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
4,50	5,80	12,93	17,98	8,09	9,89	127,86		685107,187	5000340,524
2,00	2,40	2,97	17,99	8,02	9,98	29,63		685111,754	5000320,661
2,30	2,80	4,19	19,58	9,25	10,33	43,30		685114,881	5000300,852
2,02	3,14	4,29	18,59	9,02	9,57	41,04		685121,491	5000263,913
3,96	5,81	16,20	19,50	9,20	10,30	166,86		685134,804	5000295,981
3,64	5,05	11,61	19,15	14,70	4,45	51,69		685128,471	5000326,864
3,70	3,70	9,10	19,33	7,19	12,14	110,44		685164,346	5000333,242
2,92	5,55	8,79	18,43	6,87	11,56	101,61		685173,397	5000387,240
5,32	6,57	19,76	19,65	9,24	10,40	205,58		685185,710	5000319,434
4,20	5,50	12,41	19,21	15,36	3,85	47,79		685184,337	5000324,462
4,50	5,70	18,84	16,16	3,96	12,20	229,90		685240,581	5000479,110
4,10	4,10	10,47	17,56	4,75	12,81	134,15		685242,153	5000471,788
4,71	6,60	15,06	18,05	3,94	14,11	212,50		685244,209	5000466,747
3,89	3,95	11,16	18,73	4,65	14,08	157,10		685244,267	5000459,328
3,02	3,14	6,64	18,08	6,11	11,97	79,45		685244,873	5000453,030
3,26	4,98	9,06	19,17	6,63	12,54	113,65		685246,048	5000447,280
2,80	5,00	9,66	18,90	6,71	12,19	117,76		685245,719	5000442,266
4,60	6,30	15,26	15,49	4,36	11,12	169,75		685223,336	5000475,213
3,10	5,60	10,40	19,14	7,10	12,04	125,21		685236,619	5000395,133
4,20	6,10	17,98	17,83	4,85	12,99	233,47		685227,436	5000450,800
4,51	5,56	17,98	18,59	9,42	9,17	164,88		685214,678	5000330,998
3,10	3,40	6,97	19,83	11,22	8,61	60,04		685210,621	5000344,058
5,50	5,90	21,62	19,03	9,11	9,92	214,49		685228,745	5000339,479
3,43	4,41	8,59	19,42	9,08	10,34	88,81		685224,087	5000370,961

Tabella 12 - Impianto sperimentale AALSEA, Area Albertone "A", pioppo 'I-214' di 5,5 anni con 111,6 m² di superficie produttiva a disposizione.

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
1,93	2,46	2,92	14,10	4,54	9,56	27,93		685218,935	5000372,612
2,20	2,40	2,88	16,54	4,75	11,79	33,94		685064,148	5000351,336
2,40	2,70	2,56	13,02	4,36	8,66	22,18		685074,023	5000350,957
1,89	2,57	2,54	14,67	3,94	10,73	27,25		685069,657	5000370,147
2,30	3,00	3,61	12,13	5,29	6,84	24,69		685183,770	5000346,407
2,20	2,70	3,29	13,14	5,91	7,23	23,78		685221,913	5000346,425
1,59	2,42	1,64	12,35	6,55	5,80	9,51		685109,774	5000345,368
1,82	2,35	2,60	12,95	7,53	5,41	14,08		685105,448	5000274,057
2,60	3,08	3,51	14,68	7,15	7,54	26,45		685096,584	5000273,918
1,54	3,18	2,40	12,35	6,50	5,85	14,04		685114,769	5000273,150
1,50	2,10	1,98	13,14	7,55	5,59	11,07		685105,944	5000271,391
1,49	2,11	1,94	11,98	6,48	5,50	10,67		685115,294	5000270,755
2,20	2,30	3,10	11,96	7,42	4,53	14,05		685097,203	5000269,695
1,70	1,70	1,88	13,22	5,64	7,59	14,26		685085,874	5000335,988
1,50	2,30	2,32	13,69	6,45	7,24	16,79		685106,683	5000269,511
2,18	2,36	3,12	15,14	5,27	9,87	30,79		685149,890	5000328,376
2,50	2,60	3,47	12,71	6,84	5,87	20,36		685097,235	5000267,754
1,50	2,50	2,12	11,30	7,78	3,52	7,46		685118,419	5000255,570
1,20	2,00	1,65	11,58	9,16	2,41	3,98		685106,541	5000267,491
2,27	3,78	4,58	11,75	5,28	6,47	29,64		685101,258	5000348,000
2,20	2,40	2,78	11,90	5,28	6,63	18,42		685153,995	5000361,367

Tabella 13 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
1,60	2,00	1,93	11,71	6,26	5,46	10,54		685107,126	5000266,081
2,07	2,13	2,69	13,79	8,11	5,69	15,30		685126,622	5000256,749
1,42	2,16	1,67	11,53	6,40	5,13	8,56		685109,309	5000346,937
1,90	2,40	2,90	12,47	6,37	6,10	17,69		685097,988	5000265,385
1,90	1,90	1,86	12,80	5,71	7,09	13,19		685117,691	5000257,299
1,40	1,90	1,31	14,93	5,84	9,09	11,91		685151,106	5000325,484
1,50	2,00	1,93	12,35	5,69	6,65	12,84		685117,748	5000259,756
1,70	2,70	2,60	12,86	6,21	6,65	17,29		685135,388	5000259,917
2,40	3,30	4,55	12,20	5,04	7,16	32,60		685126,291	5000259,954
1,08	1,80	1,02	12,32	6,42	5,91	6,02		685117,345	5000261,188
1,27	1,72	1,44	11,37	4,73	6,64	9,57		685082,008	5000354,370
1,30	1,79	1,48	11,78	4,62	7,15	10,59		685071,142	5000364,850
1,30	1,60	1,39	12,98	8,72	4,26	5,92		685118,905	5000253,070
2,30	2,60	3,30	13,26	4,77	8,49	28,03		685061,171	5000366,417
2,14	4,03	4,22	15,38	5,42	9,96	42,05		685221,759	5000348,110
2,22	3,27	3,36	15,59	5,18	10,42	35,00		685112,545	5000284,599
1,70	2,80	2,13	14,62	5,34	9,28	19,77		685075,763	5000283,505
2,40	2,40	2,52	16,31	7,33	8,98	22,64		685089,513	5000311,347
1,60	2,60	2,40	13,36	10,03	3,33	7,99		685104,086	5000281,352
2,10	2,70	3,71	14,41	5,56	8,85	32,84		685076,656	5000281,686
1,38	1,66	1,60	11,13	7,99	3,14	5,02		685161,004	5000366,509
1,68	2,70	2,13	13,47	7,67	5,81	12,37		685125,890	5000313,107
1,25	1,50	1,26	13,89	9,86	4,03	5,08		685104,500	5000279,912
1,90	1,90	2,40	13,87	8,05	5,82	13,97		685080,115	5000310,926
1,37	2,51	1,84	13,45	4,87	8,58	15,79		685076,530	5000280,137
1,06	1,70	1,16	12,14	5,19	6,94	8,06		685070,644	5000367,043
2,22	3,28	4,04	15,75	5,22	10,53	42,53		685183,415	5000348,681
1,90	3,00	3,25	13,63	5,91	7,72	25,09		685114,088	5000278,474
1,37	2,14	1,80	11,96	6,84	5,11	9,20		685104,969	5000277,899
2,00	2,80	3,65	15,11	6,33	8,78	32,06		685151,730	5000277,633
1,30	2,60	1,86	12,24	6,36	5,87	10,92		685141,713	5000273,655
1,90	2,20	2,55	12,97	9,50	3,47	8,84		685231,899	5000349,794
1,40	1,60	1,44	13,24	6,18	7,06	10,17		685109,844	5000343,481
1,80	2,63	2,77	13,10	6,18	6,92	19,17		685105,369	5000276,009
1,79	2,30	2,16	14,34	6,47	7,87	16,99		685152,341	5000271,569
2,17	2,47	2,20	12,35	6,74	5,62	12,36		685114,188	5000271,303
2,40	3,00	3,86	15,86	5,38	10,48	40,46		685221,668	5000213,083
1,71	3,82	3,86	12,82	6,68	6,15	23,72		685142,299	5000350,002
2,55	4,31	6,31	15,51	5,33	10,18	64,24		685100,585	5000349,971
1,40	3,90	3,30	14,02	6,57	7,45	24,57		685152,093	5000269,337
2,10	2,70	3,58	16,19	3,89	12,29	44,01		685061,137	5000368,743
2,00	2,10	2,75	14,67	6,75	7,91	21,76		685153,131	5000366,745
				5,43	7,03	13,85		685127,329	5000252,666
1,80 2,90	2,30 3,40	1,97 4,50	12,46 13,69	7,24	6,44	28,99		685125,913	5000232,666
·								685125,913	
1,81	1,98	2,30	15,26	7,89	7,36	16,94			5000265,992
2,45	2,89	3,92	14,62	6,35	8,28	32,44		685110,728	5000342,335
1,55	2,85	2,38	14,10	7,55	6,54	15,57		685079,912	5000308,762
2,38	3,45	4,15	13,38	5,76	7,62	31,64		685109,554	5000350,726
2,00	2,60 2,60	2,62 2,83	12,01 15,09	6,40 5,86	5,61 9,23	14,71 26,13		685231,167 685221,377	5000351,614 5000352,409

Tabella 13 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,27	2,57	3,36	15,05	5,56	9,49	31,90		685100,058	5000351,757
2,20	2,61	2,76	14,60	7,14	7,46	20,60		685144,921	5000353,345
1,97	2,52	3,11	13,57	5,99	7,58	23,58		685155,226	5000353,606
1,26	2,76	2,00	13,77	4,93	8,84	17,69		685108,620	5000352,623
2,00	3,24	4,15	15,93	5,43	10,51	43,60		685182,011	5000353,910
1,80	2,40	1,76	15,54	7,64	7,90	13,90		685144,975	5000354,918
1,79	3,53	2,88	12,49	5,20	7,28	20,98		685154,943	5000355,132
2,80	2,90	3,83	11,57	4,36	7,21	27,60		685099,756	5000354,401
1,28	2,16	1,80	9,77	6,43	3,34	6,02		685170,336	5000274,394
1,32	2,24	2,01	11,82	6,89	4,94	9,92		685170,223	5000272,683
1,50	2,20	1,99	10,95	5,90	5,05	10,05		685086,628	5000273,321
2,20	2,40	3,11	11,93	5,82	6,12	19,02		685077,797	5000273,073
2,30	2,30	2,64	12,37	6,98	5,39	14,23		685090,246	5000309,286
1,82	1,94	2,05	10,51	6,24	4,27	8,76		685170,268	5000270,810
1,89	2,38	2,36	13,08	6,41	6,67	15,74		685161,785	5000269,244
1,20	1,70	1,02	13,30	6,75	6,54	6,67		685088,222	5000270,217
1,68	2,49	2,55	12,22	7,50	4,72	12,03		685124,011	5000274,813
2,01	2,16	2,41	12,96	7,41	5,55	13,38		685078,746	5000269,545
1,66	1,87	1,70	12,37	6,83	5,54	9,41		685124,392	5000273,487
1,70	1,70	1,38	14,06	6,19	7,87	10,86		685088,224	5000266,224
1,55	1,64	1,35	11,45	6,43	5,03	6,79		685090,531	5000306,822
1,90	2,20	1,96	13,58	7,92	5,66	11,10		685079,512	5000266,445
2,50	2,80	4,12	14,38	8,36	6,02	24,80		685135,879	5000308,511
2,10	2,50	2,41	11,47	6,36	5,11	12,31		685091,307	5000305,298
1,56	2,74	2,13	13,34	7,83	5,52	11,76		685117,519	5000308,033
1,15	1,78	1,18	12,77	6,22	6,55	7,73		685126,122	5000307,844
1,84	2,92	2,55	13,06	7,14	5,93	15,12		685079,886	5000264,594
2,03	3,18	3,80	15,46	5,01	10,44	39,69		685111,672	5000340,786
2,17	2,55	3,04	13,97	6,23	7,74	23,53		685230,019	5000358,829
2,76	2,93	3,65	14,00	6,88	7,12	25,97		685135,164	5000312,657
2,10	2,50	2,95	13,82	5,50	8,32	24,56		685089,479	5000312,910
1,81	2,68	3,01	16,98	10,34	6,64	19,97		685079,348	5000312,971
1,90	1,90	2,15	11,52	5,74	5,78	12,42		685134,713	5000265,317
2,02	2,78	2,34	12,51	6,71	5,80	13,57		685229,611	5000360,433
1,78	2,59	3,13	13,32	6,68	6,64	20,80		685163,796	5000305,941
2,90	3,00	4,29	12,95	3,47	9,48	40,68		685209,061	5000377,560
1,18	2,03	1,35	10,99	6,42	4,57	6,17		685168,467	5000378,632
1,60	1,70	1,77	13,92	7,11	6,81	12,05		685077,099	5000324,494
1,79	2,58	2,84	16,27	5,67	10,60	30,11		685163,494	5000307,557
1,68	2,14	2,14	12,70	10,36	2,34	5,00		685171,854	5000308,661
2,20	2,30	2,58	14,06	6,80	7,26	18,73		685163,273	5000309,825
2,10	3,03	3,78	16,10	5,36	10,74	40,60		685103,391	5000336,923
2,50	2,90	4,17	13,18	10,11	3,07	12,79		685172,435	5000330,525
1,50	1,50	1,34	11,59	5,46	6,13	8,21		685085,766	5000310,610
1,80	2,10	2,17	12,62	6,16	6,45	14,00		685162,813	5000333,003
2,36	3,23	4,15	16,20	9,27	6,93	28,76		685171,760	5000311,614
2,93	3,48	5,26	16,37	6,45	9,91	52,15		685106,831	5000312,500
2,50	3,10	4,53	14,29	8,06	6,24	28,25		685106,475	5000317,053
2,30	2,70	4,04	13,68	5,76	7,92	32,00		685107,653	5000317,033
2,50	2,70	1,79	12,57	8,90	3,67	6,57	1	685225,443	5000388,015

Tabella 13 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,03	3,09	3,36	15,98	4,64	11,34	38,12		685221,930	5000407,786
1,53	2,69	1,96	16,93	7,65	9,28	18,18		685106,265	5000318,546
1,39	2,29	1,33	13,76	3,91	9,86	13,11		685168,343	5000379,874
2,02	3,10	3,74	16,35	9,01	7,34	27,47		685106,001	5000319,853
2,52	3,73	4,79	13,74	6,78	6,96	33,35		685105,751	5000321,466
2,18	2,84	3,36	14,45	5,76	8,68	29,18		685114,734	5000321,300
2,40	2,60	3,44	14,43	8,54	5,89	20,26		685064,826	5000345,345
1,77	2,51	1,83	15,27	8,12	7,14	13,07		685074,141	5000345,976
1,80	2,30	1,92	12,02	5,49	6,53	12,53		685114,708	5000322,756
2,71	2,84	3,91	10,80	4,96	5,84	22,84		685103,216	5000334,861
1,87	2,99	3,27	13,07	4,64	8,43	27,57		685064,477	5000346,772
1,20	1,50	1,05	10,25	5,38	4,87	5,12		685112,879	5000333,372
2,79	3,76	6,37	13,70	4,53	9,17	58,40		685104,658	5000323,546
1,37	2,08	1,78	13,30	4,76	8,55	15,21		685153,322	5000365,569
1,90	2,43	2,49	16,96	9,87	7,09	17,66		685135,813	5000306,326
1,30	1,50	1,00	14,60	7,87	6,73	6,73		685084,744	5000283,707
1,88	2,98	2,54	12,52	5,74	6,78	17,23		685094,395	5000283,139
2,40	3,10	3,84	13,95	3,67	10,28	39,49		685178,655	5000375,295
1,60	1,80	1,63	10,49	7,38	3,11	5,08		685112,767	5000313,253
1,60	2,30	2,19	13,31	6,19	7,12	15,59		685118,043	5000331,330
1,60	1,90	1,78	12,75	8,68	4,06	7,23		685161,173	5000323,677
1,70	3,20	3,03	14,74	6,19	8,55	25,91		685127,244	5000325,617
1,79	2,31	2,40	14,28	5,62	8,65	20,77		685070,152	5000303,037
1,80	2,50	2,40	16,58	7,94	8,65	24,55		685170,211	5000324,870
1,59	2,46	1,95	12,91	5,66	7,25	14,13		685133,159	5000313,530
1,80	3,00	3,37	13,74	7,05	6,68	22,52		685161,603	5000322,010
1,90	2,70	2,78	15,69	10,04	5,65	15,71		685124,223	5000317,130
1,96	2,90	2,70	15,09	8,01	7,08	20,53		685170,675	5000322,077
2,30	3,70	4,10	13,19	6,78	6,42	26,31		685162,883	5000315,526
1,94	2,94	3,02			6,06	18,30		685133,586	5000313,320
1,60	2,34	1,70	14,79 12,94	8,73 9,32	3,62	6,16		685139,507	5000320,004
2,20	2,40	2,20	13,05	10,61	2,44	5,37		685124,235	5000330,098
	2,40	2,20		10,37	2,85	6,24		685165,101	5000320,972
1,62			13,22					685174,900	
1,50 2,30	1,60 2,40	1,51 3,37	12,28 13,48	5,88 7,61	6,40 5,87	9,66		685175,251	5000342,828 5000341,150
			1		5,91	13,71		685176,515	5000341,130
1,57	2,23 1,38	2,32 1,05	13,26 15,56	7,35 7,01	8,55	8,98		685158,050	5000339,732
1,18									5000338,630
1,44	3,33	3,04	12,92	7,96	4,96	15,07		685167,789	
1,50	2,00	1,43	14,24	7,82	6,41	9,17		685158,135	5000334,564
1,90	3,60	3,55	12,89	5,09	7,80	27,68		685177,521	5000333,510
2,50	3,40	3,45	13,52	4,78	8,73	30,13		685168,534	5000332,174
2,10	2,20	2,57	13,09	9,90	3,19	8,20		685168,830	5000330,211
2,60	3,20	5,01	16,39	6,95	9,44	47,28		685171,104	5000314,751
1,23	2,17	1,34	12,83	10,40	2,43	3,26		685159,558	5000326,900
2,30	3,05	3,48	12,47	5,88	6,59	22,94		685118,891	5000251,664
2,40	3,50	4,56	15,20	6,13	9,07	41,36		685169,605	5000324,764
2,25	3,55	3,85	16,56	5,09	11,47	44,17		685060,951	5000377,149
1,87	2,76	2,91	13,00	9,12	3,88	11,29		685124,461	5000318,979
2,32	3,13	4,16	14,56	4,68	9,88	41,11		685143,427	5000363,611
2,10	2,70	2,64	13,92	4,82	9,10	24,03		685094,882	5000281,915

Tabella 13 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,50	3,00	4,47	16,86	8,04	8,82	39,42		685070,085	5000317,649
1,56	2,85	1,93	16,27	9,63	6,65	12,83		685139,496	5000340,038
1,39	2,71	2,36	12,39	6,88	5,51	13,00		685141,447	5000275,802
1,93	2,31	2,44	13,54	6,29	7,25	17,69		685140,940	5000281,433
2,51	3,26	4,78	15,45	6,69	8,75	41,85		685140,544	5000283,257
2,06	2,72	2,89	12,15	6,62	5,53	15,99		685149,625	5000283,511
1,35	2,24	1,74	12,37	6,65	5,72	9,95		685149,831	5000285,062
1,59	2,54	2,61	10,40	6,41	3,99	10,42		685170,194	5000276,392
2,13	2,90	2,93	14,34	5,80	8,54	25,03		685159,928	5000276,432
2,06	2,80	3,64	13,38	5,36	8,03	29,21		685225,403	5000389,955
1,90	2,10	2,25	11,66	7,78	3,88	8,73		685168,834	5000278,262
2,40	2,78	4,27	15,11	6,31	8,81	37,60		685134,282	5000317,859
1,93	2,16	2,50	12,09	7,61	4,48	11,20		685159,468	5000279,103
1,45	1,70	1,62	13,87	7,41	6,46	10,46		685133,060	5000277,887
1,60	1,70	1,49	12,58	8,22	4,36	6,49		685169,978	5000281,003
2,02	2,58	3,12	13,85	7,33	6,52	20,33		685158,735	5000281,104
2,03	2,37	2,79	11,85	6,56	5,28	14,74		685122,991	5000278,776
2,09	2,44	2,62	12,10	6,61	5,49	14,39		685107,956	5000360,590
1,70	2,30	2,36	15,03	7,15	7,88	18,59		685059,882	5000384,810
1,60	2,10	1,82	16,07	5,75	10,32	18,79		685095,102	5000328,391
1,50	2,00	1,98	12,77	7,61	5,15	10,20		685073,560	5000353,081
1,38	3,15	2,38	13,72	7,16	6,56	15,62		685157,452	5000342,591
2,00	2,20	2,44	15,44	5,96	9,48	23,12		685125,595	5000316,731
2,30	2,40	2,91	16,90	5,08	11,82	34,41		685152,902	5000310,731
1,30	1,70	1,27	15,89	5,18	10,71	13,60		685151,934	5000371,882
1,30	2,60	2,25	15,41	13,40	2,02	4,54		685134,211	5000316,305
1,70	2,10	2,50	9,52	6,33	3,18	7,96	11	685102,243	5000242,255
1,80	3,60	3,29	12,31	3,72	8,59	28,26		685210,252	5000272,205
2,00	2,40	3,46	10,07	5,92	4,16	14,39		685111,168	5000242,030
2,24	3,08	3,69	12,33	6,86	5,47	20,19		685125,484	5000212,030
2,23	3,01	3,76	13,33	5,06	8,27	31,11		685082,861	5000349,728
1,70	2,10	1,94	10,79	5,64	5,15	9,99		685102,160	5000243,649
2,30	2,70	3,91	13,64	5,24	8,41	32,87		685069,729	5000215,540
1,50	1,90	1,59	13,94	7,49	6,45	10,26		685169,673	5000313,910
1,60	2,10	1,48	15,34	7,74	7,60	11,25		685169,414	5000374,318
1,90	2,11	2,09	13,54	6,57	6,97	14,57		685110,997	5000243,802
1,60	3,00	2,71	12,76	6,55	6,21	16,82		685110,460	5000245,421
1,90	2,10	1,78	12,39	4,10	8,30	14,77		685160,540	5000374,420
3,70	3,90	7,11	16,46	6,39	10,07	71,63		685213,374	5000311,120
1,20	1,80	1,29	11,64	6,28	5,36	6,91		685086,598	5000313,326
2,11	2,58	3,27	11,82	9,26	2,56	8,38		685101,703	5000326,750
1,93	2,47	2,64	12,66	6,03	6,63	17,52		685101,705	5000210,330
2,00	2,70	3,33	16,72	5,59	11,12	37,04		685180,049	5000362,229
2,00	2,10	2,50	12,16	9,18	2,98	7,45		685109,869	5000302,229
1,60	3,03	2,99	13,96	8,03	5,93	17,74		685114,067	5000248,732
2,30	3,57	4,14	15,38	4,43	10,95	45,33		685151,246	5000325,422
								685151,246	5000379,695
1,09	2,40	2.10	14,57	8,51	6,06	9,15		-	
1,80	1,90	2,19	12,00	3,63	8,37	18,33		685063,428	5000354,538
1,32	2,80	2,25	12,21	8,49	3,72	8,36		685100,867	
1,30	1,80	1,30	11,55	5,38	6,17	8,02		685109,871	5000250,887

Tabella 13 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
1,14	1,95	1,19	10,74	5,49	5,26	6,26		685100,593	5000251,703
1,32	1,96	1,12	10,36	5,52	4,84	5,42		685109,932	5000251,915
1,29	1,66	1,39	13,23	4,96	8,27	11,49		685086,254	5000282,010
2,10	2,30	2,91	13,08	6,60	6,48	18,86		685123,083	5000280,959
1,40	1,80	1,55	12,47	5,94	6,53	10,12		685158,247	5000283,771
2,22	3,14	3,95	13,70	5,55	8,15	32,21		685099,945	5000254,150
2,01	2,69	2,71	12,43	6,16	6,27	16,98		685167,172	5000283,348
2,30	2,30	2,96	14,89	5,89	8,99	26,62		685108,967	5000258,278
2,20	2,80	3,42	15,17	7,11	8,07	27,59		685105,113	5000325,650
2,60	2,70	4,02	13,74	4,08	9,65	38,81		685098,637	5000360,829
1,40	1,70	1,63	10,90	6,56	4,34	7,07		685087,117	5000324,630
2,20	2,30	2,82	12,60	6,17	6,43	18,14		685122,371	5000282,092
1,25	1,81	1,33	12,35	7,04	5,32	7,07		685096,695	5000323,803
2,20	2,20	2,35	14,11	9,26	4,86	11,41		685096,454	5000275,705
1,80	2,70	3,18	14,08	10,86	3,22	10,24		685108,175	5000259,788
1,66	2,13	1,95	13,17	6,47	6,69	13,05		685098,950	5000260,412
1,80	2,30	2,55	14,61	6,54	8,07	20,57		685108,743	5000261,425
1,70	2,56	2,25	13,13	7,88	5,25	11,80		685113,552	5000327,795
1,90	2,40	2,46	11,57	5,13	6,44	15,85		685077,244	5000276,402
1,16	1,96	1,13	13,55	8,23	5,32	6,01		685095,739	5000277,864
1,43	1,98	1,71	13,33	10,54	2,79	4,77		685086,189	5000277,900
1,11	1,59	1,05	12,76	10,35	2,41	2,53		685086,255	5000279,150
1,44	1,96	1,83	9,82	6,30	3,52	6,44		685098,731	5000262,161
1,24	1,86	1,49	12,75	7,25	5,50	8,19		685104,062	5000327,454
1,37	1,66	1,32	13,20	5,69	7,50	9,91		685116,168	5000264,063
2,00	2,20	2,82	12,60	6,64	5,97	16,82		685107,023	5000264,106
1,50	1,50	1,53	13,25	7,06	6,20	9,48		685098,095	5000263,802
2,15	3,39	4,77	14,68	9,71	4,98	23,75		685104,760	5000329,284
1,40	2,90	1,97	15,49	8,87	6,62	13,04		685138,591	5000294,604
1,73	2,88	1,89	9,64	5,82	3,82	7,21	11	685146,855	5000294,881
1,29	1,92	1,40	15,19	8,38	6,81	9,54		685156,773	5000294,034
1,29	2,30	1,57	11,15	5,98	5,18	8,13		685147,317	5000292,861
1,70	3,20	3,21	11,24	5,49	5,76	18,48		685147,986	5000290,846
1,47	1,88	1,23	12,05	7,88	4,17	5,13		685082,136	5000348,036
1,80	1,90	2,18	11,61	7,78	3,83	8,35		685082,658	5000346,619
1,79	2,56	2,72	13,11	5,22	7,90	21,47		685118,430	5000352,559
2,20	3,40	3,38	13,71	5,06	8,64	29,21		685112,481	5000383,401
1,70	2,10	2,41	15,02	5,01	10,01	24,13		685086,375	5000330,518
1,53	3,03	2,32	13,61	4,18	9,43	21,89		685083,902	5000344,835
1,50	3,02	2,34	12,08	5,72	6,36	14,89		685149,078	5000287,334
2,17	3,36	3,78	11,01	4,47	6,54	24,71		685098,675	5000358,851
1,50	1,80	1,34	12,00	6,13	5,87	7,86		685127,761	5000349,799
2,40	2,60	3,42	15,18	6,04	9,14	31,26		685144,204	5000315,135
1,08	1,76	1,17	10,86	4,56	6,29	7,36		685170,187	5000356,165
2,07	3,22	2,85	13,41	4,21	9,20	26,23		685222,308	5000405,640
1,60	2,20	1,80	12,45	6,85	5,60	10,07		685119,363	5000348,257
1,50	2,20	1,67	15,94	4,91	11,03	18,42		685071,482	5000348,237
2,35	2,57	2,62	12,71	8,43	4,28	11,23		685127,622	5000302,020
1,59	2,31	2,02	13,57	6,52	7,06	15,32		685072,362	5000343,924
2,19	2,70	2,55	13,49	5,21	8,28	21,12		685143,600	5000361,143

Tabella 13 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,50	2,90	4,37	13,95	7,07	6,88	30,08		685140,830	5000285,743
1,66	2,13	2,11	13,08	5,28	7,80	16,45		685164,114	5000353,736
2,20	2,20	2,55	13,84	5,64	8,20	20,92		685173,625	5000353,279
1,80	2,20	2,23	13,50	4,81	8,69	19,37		685073,565	5000355,321
1,90	3,80	3,22	12,31	6,86	5,44	17,53		685085,259	5000339,236
1,80	2,50	2,21	13,03	6,52	6,51	14,38		685084,302	5000340,241
1,90	1,90	1,85	15,82	5,97	9,85	18,22		685072,409	5000301,295
2,16	3,28	3,04	15,83	5,53	10,30	31,32		685210,144	5000369,251
2,00	2,10	2,20	13,06	5,07	8,00	17,59		685117,822	5000358,085
1,58	2,43	2,28	13,20	5,08	8,13	18,53		685156,756	5000346,874
2,50	3,10	4,14	13,73	5,69	8,04	33,27		685073,805	5000293,847
1,70	2,00	1,85	13,19	9,96	3,23	5,98		685175,062	5000345,047
2,07	2,63	2,90	11,12	6,46	4,66	13,53		685164,838	5000397,699
1,10	2,50	1,78	9,49	4,06	5,43	9,67	8	685164,685	5000399,976
1,29	2,10	1,66	12,75	7,17	5,58	9,26		685074,638	5000289,906
1,60	2,10	2,03	13,23	4,56	8,67	17,59		685075,242	5000287,950
2,20	2,70	2,66	13,96	4,39	9,57	25,47		685075,506	5000285,653
1,60	2,10	2,17	12,54	6,00	6,54	14,19		685081,455	5000361,508
1,38	1,98	1,78	12,48	7,45	5,02	8,94		685080,795	5000305,073
1,81	1,92	2,15	13,01	9,71	3,30	7,09		685118,163	5000303,897
1,85	2,70	2,10	12,75	5,59	7,15	15,02		685091,023	5000303,384
1,67	2,01	1,96	14,41	6,33	8,07	15,82		685092,164	5000301,679
2,20	2,60	2,73	13,02	6,20	6,82	18,61		685081,317	5000301,397
1,60	1,60	1,79	13,88	8,96	4,93	8,82		685092,409	5000299,989
1,59	2,74	2,58	13,33	7,05	6,28	16,20		685118,268	5000301,474
2,21	3,19	2,91	12,00	5,50	6,50	18,90		685119,191	5000300,343
2,40	2,60	3,44	15,51	5,53	9,98	34,34		685128,232	5000300,370
2,30	2,40	3,01	15,65	10,11	5,55	16,69		685137,440	5000300,564
1,50	1,80	1,72	13,61	7,48	6,13	10,54		685172,876	5000358,603
2,46	2,51	3,70	12,93	5,51	7,43	27,48		685119,270	5000298,560
2,70	2,90	3,96	14,10	6,10	8,00	31,67		685128,603	5000297,981
1,59	2,08	2,15	13,36	6,86	6,50	13,98		685093,408	5000295,367
2,40	2,70	4,31	13,99	7,38	6,62	28,51		685128,473	5000295,949
1,40	2,80	2,40	14,16	10,00	4,17	10,00		685092,560	5000293,231
1,81	2,15	2,00	12,81	8,59	4,22	8,44		685128,613	5000294,188
2,90	3,00	3,97	12,97	6,66	6,30	25,02		685211,746	5000359,924
1,81	3,12	2,38	14,39	8,76	5,63	13,39		685129,786	5000293,559
1,92	2,83	2,66	13,68	10,01	3,67	9,76		685093,532	5000291,359
2,01	2,16	2,80	11,60	6,26	5,34	14,96		685144,783	5000358,154
2,20	2,70	3,31	14,57	6,21	8,36	27,69		685129,759	5000291,794
1,90	3,10	3,43	11,56	5,45	6,11	20,97		685121,021	5000291,106
2,60	3,40	4,24	16,69	6,13	10,57	44,81		685211,684	5000355,857
1,72	3,20	2,54	13,42	4,80	8,62	21,90		685093,847	5000288,933
1,50	2,00	1,87	12,25	8,50	3,75	7,01		685095,064	5000287,735
1,79	3,57	3,52	13,67	6,39	7,28	25,63		685121,035	5000289,825
2,20	3,20	3,99	12,26	6,38	5,89	23,49		685129,754	5000289,296
1,25	2,61	1,78	11,96	7,98	3,97	7,07		685093,959	5000285,386
1,90	3,60	4,33	12,67	7,35	5,32	23,04		685121,642	5000286,908
1,60	1,80	1,87	10,97	6,63	4,34	8,12		685122,362	5000284,172
2,20	3,30	3,39	14,50	9,35	5,15	17,46		685164,337	5000303,038

Tabella 13 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
1,70	2,80	2,94	12,70	5,51	7,18	21,12		685173,863	5000301,043
1,78	2,10	2,23	12,84	8,23	4,61	10,27		685164,493	5000300,018
1,87	3,14	3,44	13,61	8,29	5,32	18,30		685165,654	5000295,204
1,86	2,31	2,19	13,08	10,89	2,18	4,79		685166,252	5000293,596
1,58	2,36	2,24	12,14	6,34	5,80	12,99		685157,473	5000292,343
1,80	2,20	2,75	13,60	6,79	6,80	18,71		685166,660	5000291,817
1,80	2,10	1,81	12,92	10,98	1,94	3,51		685157,419	5000290,960
1,60	2,20	1,95	12,24	7,29	4,94	9,64		685157,351	5000289,186
1,76	2,29	2,16	12,10	6,24	5,86	12,66		685167,412	5000287,709
2,20	3,50	4,64	13,35	5,77	7,58	35,18		685108,769	5000305,460
2,48	4,18	5,15	13,44	5,28	8,16	42,03		685109,178	5000304,127
2,51	3,68	5,94	13,45	5,82	7,63	45,32		685110,152	5000302,077
2,28	4,86	6,54	13,42	5,80	7,62	49,82		685110,274	5000299,915
1,02	2,45	1,27	13,25	11,34	1,91	2,42		685100,932	5000298,920
2,90	3,80	5,17	13,94	4,95	8,99	46,50		685110,155	5000297,659
1,40	2,41	1,79	13,58	7,49	6,09	10,90		685102,054	5000297,676
1,14	2,33	1,65	14,36	11,01	3,35	5,53		685102,022	5000294,955
2,80	3,60	5,43	13,28	7,35	5,93	32,17		685111,300	5000292,743
1,40	2,23	1,81	14,65	9,72	4,93	8,92		685102,308	5000292,235
2,72	3,59	5,01	12,55	5,42	7,13	35,74		685111,871	5000289,626
1,70	2,00	1,82	13,90	8,33	5,57	10,14		685104,488	5000287,344
2,57	3,20	3,35	15,47	5,59	9,88	33,08		685207,773	5000385,230
2,00	3,00	3,60	10,23	5,98	4,25	15,32		685128,630	5000244,629
1,71	3,32	3,13	13,58	7,72	5,86	18,35		685087,449	5000322,608
1,80	2,20	1,98	14,79	9,62	5,17	10,24		685151,150	5000324,353
1,70	2,10	1,77	16,50	8,27	8,23	14,57		685078,243	5000320,992
1,55	2,59	2,10	15,16	4,21	10,95	22,99		685108,286	5000356,438
1,79	2,64	2,49	14,24	5,20	9,04	22,50		685123,281	5000324,516
2,50	2,50	3,64	16,05	9,37	6,68	24,32		685132,768	5000325,759
2,30	2,70	3,58	13,11	4,74	8,37	29,97		685088,147	5000320,233
2,08	3,05	2,94	13,37	4,59	8,79	25,84		685123,414	5000329,440
1,80	2,70	2,26	16,05	8,34	7,71	17,43		685144,208	5000359,623
2,20	2,30	2,93	13,36	5,05	8,31	24,34		685131,727	5000332,274
2,40	2,70	3,99	14,02	6,60	7,42	29,61		685141,794	5000322,516
2,70	3,50	4,00	15,15	8,61	6,54	26,16		685151,579	5000321,700
2,26	4,45	5,78	16,49	7,01	9,48	54,79		685141,782	5000320,764
2,80	3,10	4,38	15,57	7,18	8,39	36,73		685099,076	5000356,951
1,93	2,66	3,02	15,29	7,58	7,71	23,27		685088,835	5000317,224
2,30	2,50	3,15	14,93	6,94	7,99	25,17		685151,811	5000319,568
2,00	2,30	2,84	16,60	7,11	9,49	26,94		685180,577	5000360,366
1,47	1,91	1,60	13,12	5,58	7,54	12,06		685079,097	5000316,111
1,05	2,86	1,72	14,35	8,81	5,55	9,54		685089,251	5000315,884
2,06	2,98	3,01	13,93	8,73	5,19	15,63		685188,533	5000313,884
2,00	2,90	3,21	15,95	6,30	8,76	28,13		685152,120	5000321,742
2,10	2,90	2,90	12,52	5,49	7,03	20,38		685122,173	5000317,976
2,10	2,20	2,90	12,52	7,18	5,62	15,67		685152,633	5000335,412
3,00	3,40	5,59	14,03	6,40	7,63	42,64		685179,690	5000321,340
2,50	3,11	4,07	14,25	7,58	6,68	27,19		685143,650	5000316,298
2,00 1,90	2,36 2,50	3,05 2,86	12,46 12,87	7,14 6,22	5,32 6,64	16,22 19,00		685179,558 685119,893	5000316,849

Tabella 13 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
1,10	1,50	1,19	15,53	3,88	11,66	13,87		685169,792	5000370,745
1,72	2,24	2,55	10,01	6,33	3,68	9,39		685119,832	5000244,666
1,55	3,05	3,10	11,58	6,24	5,34	16,56		685119,805	5000247,202
2,12	2,88	3,38	15,77	6,92	8,85	29,91		685071,509	5000307,152
2,80	3,00	4,58	15,72	6,12	9,60	43,96		685145,367	5000307,852
1,60	1,80	1,79	14,69	5,92	8,78	15,71		685099,499	5000305,934
2,02	3,07	3,90	14,73	6,95	7,77	30,32		685208,210	5000380,980
1,20	2,20	1,28	11,34	6,86	4,48	5,73		685130,873	5000336,046
2,20	2,40	2,58	12,20	6,24	5,96	15,37		685111,948	5000386,975
1,92	3,46	3,15	16,89	7,15	9,74	30,67		685071,266	5000308,710
1,70	1,80	1,52	12,07	7,33	4,74	7,20		685099,038	5000307,621
1,96	2,73	3,78	12,46	5,68	6,78	25,62		685128,208	5000248,786
1,10	2,30	1,12	12,05	9,69	2,36	2,64		685129,993	5000336,868
3,41	3,49	5,48	14,83	5,00	9,84	53,90		685209,619	5000371,652
2,03	3,20	3,96	12,96	6,35	6,61	26,18		685107,590	5000308,896
2,30	3,00	3,93	13,75	8,22	5,53	21,74		685070,926	5000310,331
2,10	3,40	3,87	13,85	6,31	7,54	29,17		685107,630	5000310,395
2,25	2,85	3,48	13,87	6,30	7,57	26,33		685144,099	5000309,682
1,90	2,34	2,86	16,81	4,54	12,27	35,10		685218,429	5000374,715
2,60	3,00	4,38	12,30	6,55	5,75	25,18		685223,741	5000338,310
2,10	2,90	3,36	14,08	8,29	5,79	19,45		685144,225	5000312,001
2,80	3,10	4,45	14,70	5,93	8,77	39,01		685223,493	5000340,492
2,30	2,60	3,23	12,55	5,19	7,36	23,78		685129,726	5000341,677
2,69	3,55	5,40	12,41	6,47	5,94	32,10		685222,870	5000342,429
2,57	3,14	4,84	12,33	5,90	6,42	31,10		685222,683	5000344,442
2,01	3,48	3,83	16,73	8,38	8,34	31,96		685070,209	5000312,348
2,60	3,04	5,16	16,58	6,63	9,95	51,35		685187,605	5000324,758
2,30	2,30	3,28	16,35	7,24	9,10	29,86		685179,156	5000326,124
2,43	2,90	3,82	15,04	7,24	7,79	29,77		685187,037	5000327,015
1,30	1,80	1,47	11,82	6,16	5,66	8,32		685227,213	5000373,938
2,60	2,60	3,77	14,17	7,14	7,03	26,51		685187,002	5000329,125
1,70	2,10	2,18	13,23	6,25	6,99	15,23		685075,550	5000330,408
2,90	3,10	4,89	14,34	10,23	4,11	20,08		685177,584	5000331,562
2,60	3,10	5,27	15,88	6,74	9,14	48,18		685186,418	5000331,389
1,49	1,80	1,79	12,44	6,99	5,45	9,76		685074,961	5000334,713
2,10	3,29	4,16	15,33	6,37	8,97	37,29		685185,765	5000334,206
2,33	3,85	5,93	16,46	7,95	8,51	50,49		685185,756	5000337,085
2,84	3,00	4,75	13,44	8,06	5,37	25,51		685184,731	5000339,033
2,10	3,10	3,00	11,65	7,61	4,04	12,13		685184,732	5000340,845
1,80	2,60	2,70	13,90	7,38	6,53	17,63		685184,530	5000343,107
2,20	2,99	3,41	13,42	5,68	7,74	26,40		685183,874	5000344,351
1,80	3,10	2,79	14,85	6,80	8,05	22,45		685146,543	5000303,374
2,60	3,60	4,84	14,67	5,17	9,49	45,95		685146,301	5000298,671
1,80	3,00	3,06	13,66	5,60	8,06	24,65		685137,368	5000298,572
1,77	3,72	2,67	12,07	7,53	4,54	12,12		685156,273	5000297,684
2,20	2,20	2,62	13,39	8,64	4,75	12,44		685147,283	5000297,318
2,00	2,80	3,35	16,29	8,81	7,48	25,06		685138,120	5000296,669
1,42	1,71	1,48	10,50	4,54	5,96	8,82		685159,108	5000382,606
1,88	2,81	3,15	14,13	8,08	6,06	19,09		685153,674	5000263,802
1,40	2,20	1,75	12,79	5,66	7,13	12,47		685227,710	5000372,652

Tabella 13 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,06	2,62	3,05	12,06	5,79	6,26	19,11		685136,413	5000255,791
2,20	2,79	3,49	11,42	5,86	5,56	19,40		685138,072	5000248,579
1,30	1,90	1,64	14,18	6,18	8,00	13,12		685088,108	5000264,056
2,10	2,10	2,48	12,51	3,45	9,06	22,46		685099,045	5000365,136
1,82	3,31	3,28	13,88	6,07	7,81	25,62		685080,358	5000262,453
1,30	1,50	1,11	10,47	4,13	6,34	7,03		685098,846	5000367,211
2,10	2,50	2,99	16,67	10,25	6,42	19,20		685088,742	5000259,971
1,70	2,60	2,28	15,02	10,31	4,70	10,73		685081,392	5000258,462
2,80	3,00	3,96	14,61	5,63	8,98	35,58		685081,706	5000256,291
1,80	2,00	2,43	12,70	6,05	6,65	16,16		685089,910	5000255,761
2,00	2,20	2,87	14,56	6,05	8,51	24,43		685082,188	5000254,428
1,70	1,80	1,60	11,91	5,90	6,01	9,61		685090,166	5000254,310
2,28	2,47	2,94	14,16	8,34	5,82	17,12		685090,934	5000252,721
1,77	2,22	2,03	13,10	6,28	6,83	13,86		685091,742	5000250,870
1,40	1,80	1,54	13,98	7,48	6,50	10,02		685102,782	5000293,338
1,76	2,52	2,91	12,48	5,75	6,73	19,57		685090,216	5000362,084
1,60	2,70	2,80	15,31	8,14	7,17	20,07		685112,939	5000286,289
1,60	2,00	2,62	14,17	7,25	6,92	18,12		685170,352	5000322,055
2,20	2,90	4,08	15,22	9,76	5,47	22,31		685167,963	5000333,983
2,30	2,53	3,68	13,69	6,92	6,77	24,92		685131,299	5000279,639
1,80	2,90	4,04	12,50	8,44	4,05	16,37		685214,627	5000339,962

Tabella 13 - Impianto sperimentale AALSEA, Area Albertone "A", platano di 5,5 anni con 9 m² di superficie produttiva a disposizione.

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,90	3,70	6,35	9,18	4,69	4,49	28,53		685047,803	5001155,735
3,57	3,87	7,97	10,76	4,54	6,23	49,65		685050,379	5001156,537
3,71	4,30	7,60	11,83	4,63	7,20	54,74		685050,572	5001153,649
3,30	3,40	5,88	10,47	4,10	6,37	37,43		685048,315	5001152,760
3,33	3,44	6,03	10,55	4,95	5,60	33,76		685043,958	5001153,341
3,18	8,45	12,15	10,31	3,84	6,47	78,64		685043,920	5001151,123
3,80	4,30	7,63	11,75	4,56	7,19	54,84		685049,123	5001150,311
3,70	3,70	8,02	9,46	4,11	5,34	42,87		685043,139	5001149,284
3,35	3,81	5,88	11,77	4,44	7,33	43,08		685051,484	5001150,617
3,08	4,13	6,69	12,52	3,98	8,53	57,09		685051,603	5001148,227
3,44	3,70	8,80	8,01	3,34	4,68	41,16		685147,790	5001148,844
3,60	4,00	6,64	10,91	3,95	6,97	46,25		685026,938	5001151,318
3,38	4,26	7,69	10,49	5,14	5,35	41,15		685059,289	5001158,478
3,30	3,50	6,77	10,00	5,22	4,77	32,31		685062,702	5001156,990
3,30	3,90	6,71	11,24	4,93	6,31	42,37		685060,038	5001155,969
2,66	4,11	5,89	10,44	4,72	5,72	33,71		685063,330	5001154,421
3,10	4,10	8,24	9,63	3,40	6,23	51,34		685150,844	5001150,226
2,90	3,70	6,60	10,48	4,06	6,42	42,34		685063,696	5001152,017
2,70	2,70	5,18	10,60	3,55	7,05	36,52		685060,715	5001153,109
3,50	4,40	9,06	10,70	3,55	7,15	64,82		685060,829	5001150,675
3,90	3,90	9,00	11,51	5,22	6,29	56,57		685077,733	5001157,392
4,10	4,40	9,52	12,87	4,54	8,33	79,33		685081,632	5001155,624
3,70	4,00	9,80	11,93	4,48	7,45	72,99		685078,422	5001154,415
3,50	3,60	8,01	9,94	3,34	6,60	52,87		685093,955	5001155,283

Tabella 14 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordinates (x;y)	
3,70	4,10	9,55	10,97	3,77	7,20	68,72		685095,107	5001152,224
4,41	5,35	8,60	10,99	4,45	6,54	56,28		685079,307	5001151,776
3,38	4,30	8,40	12,33	4,25	8,08	67,84		685082,645	5001152,628
3,69	5,98	9,10	11,48	4,66	6,82	62,06		685079,608	5001148,800
3,60	4,10	9,02	12,13	4,78	7,35	66,29		685082,749	5001149,930
4,20	4,50	11,12	9,88	2,99	6,89	76,58		685129,898	5001157,010
3,60	3,80	7,09	8,71	3,27	5,44	38,56	12	685132,953	5001157,419
4,60	4,90	13,28	12,00	4,17	7,83	104,05		685117,044	5001153,698
2,98	6,88	8,76	10,85	4,56	6,29	55,10		685133,777	5001154,653
3,40	5,70	11,11	11,45	3,81	7,64	84,89		685130,866	5001153,903
3,96	4,36	7,16	11,59	3,65	7,94	56,89		685134,183	5001151,335
2,63	4,42	5,43	10,65	4,09	6,56	35,65		685131,342	5001151,172
3,16	4,07	5,96	11,40	3,36	8,04	47,91		685135,112	5001148,599
2,91	4,66	7,32	8,80	2,97	5,84	42,72		685147,142	5001152,184
3,90	4,10	9,05	8,96	2,96	6,00	54,29		685149,625	5001153,220
3,30	4,20	8,71	10,46	4,91	5,55	48,31		685113,833	5001150,363
3,60	4,50	9,33	11,31	4,47	6,83	63,76		685117,388	5001150,670
4,40	5,20	13,56	12,08	3,03	9,04	122,64		685112,941	5001153,086
2,70	3,20	5,19	10,99	3,07	7,93	41,14		685093,014	5001167,768
3,20	4,10	7,52	9,84	6,82	3,02	22,74		685079,483	5001166,714
3,90	4,50	9,81	9,31	5,03	4,28	41,95		685075,635	5001166,445
4,10	4,30	10,43	10,98	3,03	7,94	82,84		685076,777	5001163,791
2,60	3,70	5,25	9,64	4,31	5,33	27,99		685093,889	5001164,109
3,40	3,60	6,99	12,46	0,95	11,51	80,47		685079,798	5001163,827
3,30	3,30	6,32	10,05	5,68	4,37	27,62		685080,214	5001161,345
4,00	4,40	9,58	10,10	4,38	5,72	54,85		685077,000	5001160,515
3,90	4,00	8,56	11,20	5,11	6,08	52,08		685080,425	5001158,557
2,49	3,84	5,36	9,51	3,99	5,52	29,58		685129,516	5001160,060
3,10	3,20	6,38	9,97	2,67	7,30	46,61		685132,203	5001160,387
3,55	4,16	8,73	11,57	2,72	8,85	77,25		685097,969	5001152,843
3,10	3,90	6,89	9,30	3,68	5,62	38,72		685113,239	5001165,446
3,50	4,20	7,62	9,00	3,72	5,28	40,23		685109,806	5001164,689
3,48	3,61	7,22	11,73	5,02	6,71	48,44		685113,909	5001162,916
3,86	5,43	12,35	12,76	3,76	9,00	111,10		685110,663	5001162,910
3,60	4,30	7,66	10,69	4,48	6,21	47,60		685096,436	5001101,822
3,31	3,78	6,55	9,97	4,98	4,99	32,70		685061,936	5001159,839
3,70	4,70	9,50	12,78	4,48	8,31	78,91		685114,224	5001159,859
3,56		9,51	10,76	3,72	7,04	66,97		685111,205	5001158,648
3,69	4,32 4,80	10,07	10,70	3,57	6,92	69,71		685112,206	5001155,839
•	<u> </u>							685115,349	
4,06	5,00	11,63	11,19	4,92	6,27	72,95			5001157,105
4,10	4,90	12,93	10,87	3,84	7,03	90,92		685122,661	5001127,788
3,20	4,90	7,36	10,65	5,12	5,53	40,69		685136,687	5001128,763
4,20	4,50	9,83	12,68	2,82	9,86	96,88		684974,964	5001086,545
3,01	4,50	7,14	9,83	4,27	5,56	39,73		685119,268	5001129,329
2,79	3,33	5,47	10,55	3,05	7,50	41,00	0	685047,750	5001128,809
3,20	4,10	7,85	7,16	3,37	3,78	29,70	8	685170,458	5001129,664
3,30	3,80	6,17	11,54	4,91	6,64	40,95		685136,184	5001130,997
3,15	5,49	10,58	11,32	4,07	7,24	76,61		685122,076	5001130,687
4,41	5,75	14,84	12,30	3,45	8,85	131,33		685157,229	5001130,269
3,42	4,15	5,89	10,92	3,56	7,36	43,37		685050,214	5001129,479

Tabella 14 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
4,20	4,50	8,50	9,46	2,85	6,60	56,13		685173,209	5001133,371
3,10	3,90	6,85	8,87	3,70	5,17	35,44		685118,393	5001132,323
3,99	6,05	14,07	12,57	3,10	9,47	133,24		685037,716	5001130,350
3,80	4,30	9,63	10,82	3,75	7,07	68,10		685121,228	5001133,845
2,54	4,22	6,17	11,77	2,78	8,99	55,48		685050,295	5001131,547
2,90	3,70	5,47	10,62	3,21	7,42	40,57		685047,418	5001131,176
3,74	4,78	9,49	11,58	3,97	7,61	72,23		685135,909	5001133,802
4,15	6,68	12,61	12,75	4,24	8,51	107,36		685038,117	5001132,969
3,69	4,39	8,16	11,07	3,09	7,98	65,13		685052,371	5001133,136
4,10	4,80	8,10	8,82	2,98	5,85	47,36		685170,196	5001132,801
3,25	4,28	8,37	9,75	4,21	5,54	46,38		685117,303	5001135,174
3,80	3,90	7,12	8,72	3,09	5,63	40,10		685046,801	5001134,059
4,00	4,50	10,83	10,59	3,14	7,45	80,68		685172,794	5001136,232
2,97	3,78	5,33	14,17	6,87	7,30	38,90		684960,005	5001082,890
3,36	3,81	7,53	11,73	5,80	5,94	44,72		684972,245	5001083,215
3,20	3,50	5,13	11,54	2,60	8,93	45,83		684975,267	5001083,882
4,00	4,20	9,08	9,64	3,38	6,26	56,83		685169,515	5001136,201
3,18	4,90	10,03	11,02	3,83	7,19	72,12		685120,334	5001136,346
3,63	4,58	9,81	10,73	4,45	6,28	61,58		685134,921	5001136,977
2,80	3,68	5,91	9,39	2,79	6,60	39,01		685049,208	5001135,415
2,77	3,69	5,52	10,49	2,75	7,74	42,70		685045,966	5001136,972
2,90	3,00	5,19	10,99	4,72	6,27	32,57		685052,292	5001136,189
2,49	4,27	6,23	11,76	2,90	8,86	55,18		685048,514	5001138,164
3,00	4,00	7,19	12,30	4,03	8,27	59,45		685055,198	5001136,853
3,41	3,91	6,91	10,36	3,47	6,89	47,58		685172,201	5001139,209
3,30	3,50	7,97	9,88	3,49	6,39	50,90		685169,010	5001139,226
3,45	4,40	6,53	10,00	3,93	6,07	39,64		685036,206	5001137,692
4,17	5,36	11,13	12,10	3,71	8,39	93,37		685119,597	5001139,210
3,20	4,30	8,74	11,07	3,29	7,78	68,01		685051,365	5001139,024
3,70	3,90	7,77	11,40	3,46	7,94	61,69		685134,244	5001140,264
3,64	4,65	8,10	10,43	3,86	6,57	53,24		685171,347	5001141,705
3,40	4,50	7,16	10,70	3,30	7,40	52,98		685047,989	5001140,431
3,20	3,30	6,15	12,34	3,38	8,96	55,10		685054,370	5001139,498
3,40	4,20	6,03	11,79	4,96	6,84	41,23		685074,224	5001107,779
2,59	4,72	6,78	11,28	4,35	6,93	47,00		685070,350	5001108,989
2,73	3,30	5,66	10,11	3,77	6,35	35,92		685071,205	5001107,012
3,06	4,21	5,75	9,75	4,53	5,23	30,05		685059,849	5001106,612
3,00	3,90	6,36	15,03	5,17	9,86	62,72		684954,024	5001106,276
3,31	4,56	7,49	14,64	4,48	10,16	76,08		684952,791	5001108,113
3,20	3,70	5,79	14,38	6,60	7,77	45,01		684951,515	5001105,238
2,57	3,93	5,64	14,78	6,52	8,26	46,58		684952,285	5001103,230
	3,70	6,98		3,18		45,52		685045,067	5001102,087
3,40 4,50	5,50	12,39	9,71 12,55	3,64	6,52 8,91	110,39		685004,344	5001140,016
3,60	4,20	8,71		4,50	7,71	67,18		685000,593	5001108,683
			12,21			+		685000,593	5001108,562
4,10	4,50	9,03	12,47	6,36	6,10	55,13			
4,10	4,70	8,46	11,85	4,94	6,90	58,41		685001,602	5001105,678
4,20	4,70	11,23	12,01	3,78	8,22	92,34	1	685118,767	5001142,145
2,74	3,34	5,39	11,13	3,73	7,40	39,88	1	685133,617	5001143,082
2,80	3,30	5,81	11,65	3,42	8,23	47,79		685044,252	5001143,277
4,10	4,30	8,08	11,07	3,10	7,97	64,38		685047,372	5001143,44

Tabella 14 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
3,60	4,00	8,99	12,10	5,32	6,77	60,91		685005,345	5001103,037
3,67	4,43	7,56	11,33	5,33	6,00	45,34		685002,026	5001102,119
3,10	3,80	7,40	9,85	3,04	6,81	50,41		685167,948	5001141,855
3,70	4,30	7,60	10,83	4,76	6,07	46,15		685002,381	5001099,475
3,22	3,56	6,86	12,48	5,35	7,13	48,93		685018,769	5001108,914
2,59	3,98	6,25	10,67	4,84	5,83	36,45		685037,308	5001107,871
2,92	4,09	6,82	12,19	5,70	6,49	44,24		685018,912	5001106,215
3,50	4,70	9,57	12,98	5,58	7,40	70,78		685037,566	5001105,106
4,20	5,30	10,69	12,87	4,93	7,94	84,88		685023,481	5001104,477
3,90	4,10	8,45	12,48	4,29	8,19	69,25		684966,014	5001108,845
2,85	5,48	7,42	13,21	5,46	7,75	57,48		684970,939	5001103,653
3,73	4,05	7,50	13,88	6,18	7,70	57,73		684968,548	5001100,430
2,99	3,39	7,15	12,92	6,68	6,24	44,62		684971,284	5001100,727
4,50	4,70	11,30	10,82	4,74	6,08	68,67		685084,621	5001128,938
3,20	3,70	7,58	13,55	4,59	8,96	67,91		684971,856	5001097,740
3,60	4,30	9,45	13,38	6,25	7,13	67,35		684968,849	5001097,222
3,07	4,01	7,09	12,22	6,60	5,62	39,85		684969,331	5001094,002
3,40	5,10	8,58	12,88	4,61	8,27	70,92		684972,438	5001094,416
3,80	3,90	6,91	12,79	3,96	8,83	61,02		684973,157	5001091,646
4,10	4,20	9,73	13,05	7,26	5,79	56,36		684969,658	5001091,273
3,40	3,60	6,72	13,47	3,59	9,88	66,39		684973,746	5001088,888
2,64	3,28	5,13	10,11	5,46	4,65	23,85		685053,265	5001108,638
2,66	3,63	5,22	10,76	4,61	6,16	32,15		685044,224	5001106,730
3,50	4,20	8,48	13,63	6,28	7,36	62,40		684984,569	5001104,540
3,67	5,58	10,29	12,58	5,17	7,41	76,22		684988,441	5001105,472
3,20	3,90	6,87	12,30	4,11	8,19	56,29		685044,277	5001103,547
3,66	3,90	8,67	11,63	4,54	7,09	61,45		684989,406	5001099,425
3,26	3,32	5,71	10,80	4,07	6,74	38,46		685136,044	5001143,927
3,30	3,40	6,39	10,41	5,37	5,04	32,21		684990,514	5001096,941
2,80	3,40	5,70	12,09	5,26	6,83	38,93		684990,331	5001094,036
2,98	3,15	5,29	10,34	5,63	4,72	24,96		684987,930	5001092,547
3,20	3,30	5,19	11,17	4,74	6,43	33,38		685050,638	5001144,529
3,00	3,80	5,91	15,16	5,33	9,82	58,07		684951,168	5001117,563
3,14	4,43	7,80	13,02	5,83	7,19	56,08		684948,674	5001114,396
3,10	3,50	6,07	13,27	5,37	7,90	47,93		684951,331	5001114,597
2,90	3,90	6,09	12,27	3,73	8,55	52,05		685052,788	5001145,460
3,80	3,90	7,25	10,44	4,10	6,34	45,96		685167,844	5001144,641
2,86	4,17	7,06	11,88	3,87	8,01	56,54		685043,622	5001146,363
4,30	4,60	9,97	13,73	6,22	7,51	74,90		684949,770	5001111,062
4,22	5,44	12,54	11,89	5,28	6,61	82,88		684997,333	5001131,826
3,00	4,40	7,91	14,04	5,24	8,79	69,56		684952,709	5001111,741
3,40	4,40	9,22	10,65	3,92	6,73	62,06		685083,648	5001131,720
3,30	4,30	9,94	12,59	6,89	5,70	56,68		684949,422	5001107,909
3,00	3,60	5,52	11,34	3,60	7,74	42,75		685135,247	5001146,037
2,89	3,56	6,02	11,54	3,91	7,63	45,96		685049,744	5001146,840
2,60	3,10	5,31	11,13	4,64	6,49	34,45		685086,649	5001132,134
3,90	4,30	10,29	9,97	3,31	6,66	68,49		685170,814	5001144,885
3,75	4,59	10,61	13,65	3,98	9,67	102,58		685118,528	5001145,397
3,50	4,90	10,12	11,42	4,29	7,13	72,18		685117,676	5001148,120
3,80	4,00	7,59	9,61	2,92	6,69	50,78		685166,692	5001147,104

Tabella 14 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
3,30	4,62	8,02	12,86	4,52	8,34	66,86		685045,862	5001146,904
4,10	4,30	10,65	9,20	2,48	6,72	71,55		685170,305	5001148,433
2,96	4,66	8,85	11,78	3,66	8,12	71,82		685015,567	5001132,901
3,17	3,54	6,44	10,25	3,77	6,48	41,76		685083,528	5001134,240
3,50	3,70	6,16	13,12	4,03	9,09	56,00		684985,038	5001119,244
3,39	4,13	7,94	12,42	5,40	7,03	55,80		684981,957	5001118,380
3,59	4,50	9,67	9,07	3,62	5,46	52,76		685102,439	5001116,802
4,20	4,41	10,57	11,53	4,06	7,47	78,94		685059,163	5001118,852
3,27	4,80	8,45	11,98	3,98	8,00	67,63		685034,919	5001119,257
3,01	3,59	6,41	11,26	5,48	5,78	37,02		685068,864	5001118,731
3,40	5,10	9,34	10,64	3,54	7,10	66,28		685105,817	5001117,600
4,00	4,40	9,21	10,95	4,05	6,90	63,55		685032,056	5001118,552
4,00	4,20	8,03	11,28	4,89	6,39	51,33		685069,144	5001115,447
3,80	4,00	5,67	11,51	3,95	7,56	42,84		685034,643	5001116,135
3,20	3,80	7,59	11,10	5,35	5,75	43,65		684985,397	5001116,521
3,30	3,60	7,95	12,82	5,40	7,42	58,96		684982,305	5001115,500
2,95	4,76	7,57	10,67	3,76	6,91	52,29		685057,730	5001115,084
2,98	3,74	7,40	12,27	4,50	7,77	57,51		685072,594	5001115,660
4,41	4,49	11,95	12,64	3,91	8,72	104,26		685020,894	5001115,209
3,40	4,00	8,06	12,20	3,24	8,96	72,21		685061,116	5001116,154
3,70	4,70	9,07	10,34	4,16	6,18	56,03		685035,634	5001113,524
4,70	5,00	14,02	9,94	3,22	6,72	94,21		685107,119	5001114,078
3,50	4,00	7,56	12,93	4,40	8,54	64,55		684983,829	5001112,682
3,54	4,48	9,37	12,35	4,48	7,87	73,72		685073,697	5001112,698
3,42	4,28	9,43	11,68	5,03	6,65	62,70		685060,468	5001112,675
3,90	4,70	9,22	12,64	6,51	6,13	56,51		685021,113	5001112,208
3,60	3,70	7,49	11,15	4,24	6,91	51,77		685070,450	5001112,302
4,10	4,30	9,34	13,27	4,11	9,16	85,56		685012,302	5001132,456
4,30	4,40	9,77	11,64	4,39	7,25	70,83		684986,390	5001113,449
3,30	3,50	6,51	10,52	4,35	6,17	40,17		685057,609	5001113,113
4,40	4,40	10,44	12,03	4,62	7,40	77,31		685015,414	5001135,967
3,10	3,40	5,97	10,74	4,14	6,60	39,43		685033,702	5001109,652
2,93	3,70	5,64	11,34	5,31	6,03	34,01		685035,890	5001110,321
3,44	4,81	9,68	12,87	5,25	7,62	73,78		685021,799	5001110,921
3,70	4,60	10,41	12,89	4,62	8,27	86,06		684987,520	5001108,471
2,98	3,99	7,00	13,56	5,37	8,20	57,37		684983,381	5001107,685
2,73	3,62	6,28	10,46	4,27	6,19	38,87		685059,138	5001107,665
2,68	3,00	5,31	10,99	5,13	5,86	31,12		685073,770	5001110,287
3,30	4,10	7,66	11,86	3,72	8,14	62,38		685061,867	5001110,207
4,00	5,30	9,78	13,53	2,96	10,57	103,36		685022,592	5001107,170
3,06	4,18	6,80	11,34	5,09	6,24	42,44		685012,262	5001135,225
3,12	3,68	7,37	11,27	4,04	7,23	53,29		685082,484	5001135,223
3,10	3,80	6,82	11,77	4,38	7,39	50,41		685068,856	5001130,097
3,30	4,60	8,56	12,42	3,86	8,56	73,24		685084,791	5001130,097
2,56	4,00	5,90	12,42	4,55	7,93	46,77		685069,792	5001137,193
3,01	4,14	8,77	11,90	3,27	8,63	75,64		685057,692	5001126,887
						1			
2,97	4,46	7,02	11,89	3,51	8,38	58,81		685033,251	5001125,666
3,90	5,20	11,71	11,86	4,01	7,85	91,89		685017,751	5001124,084
3,40 3,30	4,40 3,80	7,44 6,61	11,29 11,08	4,33 3,35	6,96 7,72	51,75 51,05		685066,936 685030,085	5001126,884

Tabella 14 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
3,04	4,39	5,85	11,00	2,98	8,02	46,91		685085,341	5001139,658
3,50	3,80	7,57	11,55	4,35	7,20	54,51		685067,451	5001124,207
3,10	3,70	7,17	11,46	5,45	6,01	43,13		685070,608	5001124,626
3,80	4,10	8,63	12,24	3,68	8,56	73,87		685033,775	5001122,434
3,20	3,70	6,73	12,43	4,02	8,41	56,61		685098,449	5001149,829
3,35	5,02	8,31	11,98	5,84	6,14	50,99		685071,162	5001122,369
3,90	4,60	9,75	11,45	3,61	7,84	76,41		685030,552	5001121,510
3,90	4,10	9,58	11,91	3,06	8,85	84,82		685058,827	5001122,098
3,20	3,20	6,33	10,58	5,09	5,49	34,75		685068,009	5001121,748
4,70	5,00	12,50	12,17	4,58	7,59	94,86		685019,453	5001118,616
3,80	3,90	8,24	11,21	3,23	7,97	65,71		685096,056	5001146,320
3,90	4,70	10,21	11,78	2,81	8,97	91,57		685114,631	5001147,277
3,80	4,30	9,37	10,75	3,21	7,54	70,65		685061,988	5001147,845
3,00	3,10	6,66	12,11	5,12	6,99	46,57		685071,793	5001119,576
3,30	3,40	6,38	11,18	4,17	7,00	44,67		685081,981	5001139,496
4,20	5,40	11,18	9,12	4,67	4,45	49,80		684995,801	5001141,029
3,70	4,30	9,90	12,34	4,22	8,12	80,38		685099,271	5001147,120
3,54	3,89	7,90	11,05	2,79	8,25	65,20		685062,253	5001144,886
3,04	4,11	7,49	12,35	3,19	9,16	68,62		685114,945	5001144,079
3,70	4,20	8,69	11,77	4,21	7,56	65,71		685100,073	5001143,498
2,78	3,49	5,65	12,03	4,67	7,35	41,55		685101,044	5001141,197
3,50	4,60	7,92	12,08	4,50	7,59	60,10		684963,885	5001117,814
3,28	4,48	9,15	13,33	5,85	7,47	68,37		684967,012	5001118,725
3,10	3,50	6,19	11,35	3,48	7,88	48,75		685115,394	5001141,965
3,55	4,01	9,05	11,06	3,24	7,81	70,70		685096,809	5001142,302
4,10	4,50	10,49	11,59	4,31	7,28	76,39		685065,515	5001142,148
3,80	4,20	8,50	12,38	2,82	9,56	81,26		685083,228	5001146,650
3,90	4,00	9,16	10,47	2,83	7,64	69,96		685063,020	5001140,918
3,32	5,03	9,39	11,11	3,85	7,26	68,19		685116,415	5001138,781
4,10	4,10	10,41	12,82	6,13	6,69	69,66		684968,103	5001115,833
3,31	3,68	7,94	11,43	5,04	6,38	50,69		685098,239	5001139,909
2,40	4,30	5,90	11,42	3,85	7,57	44,66		685009,608	5001147,256
3,88	4,16	8,65	12,46	5,20	7,25	62,76		685067,391	5001138,910
3,60	4,10	8,08	12,55	5,83	6,72	54,33		684964,808	5001114,988
3,14	3,93	6,94	11,58	2,67	8,90	61,79		685095,726	5001149,262
3,46	3,83	7,80	12,28	3,65	8,63	67,35		685101,112	5001138,400
3,80	4,60	8,39	11,18	3,69	7,48	62,80		685098,479	5001137,200
3,60	4,60	8,95	13,04	5,05	7,99	71,50		684968,941	5001112,771
3,30	4,00	7,25	13,24	4,85	8,38	60,78		684965,617	5001112,126
3,10	4,06	5,93	11,11	4,36	6,76	40,06		685099,114	5001134,939
3,96	4,33	7,94	12,18	4,40	7,78	61,74		685067,625	5001136,219
3,19	3,75	7,13	11,14	3,12	8,02	57,19		685032,622	5001128,843
3,40	4,60	8,43	12,34	3,01	9,34	78,73		685102,101	5001135,629
4,60	5,20	12,76	12,53	5,44	7,09	90,46		685016,855	5001129,848
3,80	4,90	9,46	11,90	3,29	8,61	81,45		685140,537	5001128,767
3,77	4,72	10,14	12,52	3,72	8,80	89,27		685029,132	5001130,809
3,15	3,99	7,08	12,06	4,03	8,04	56,91		685065,671	5001132,818
3,20	4,90	8,24	12,33	4,05	8,28	68,24		685055,654	5001132,899
3,00	3,70	6,20	13,24	5,60	7,64	47,38		685032,171	5001131,478
2,74	3,87	6,85	12,68	4,89	7,79	53,35		685068,309	5001133,580

Tabella 14 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
3,30	4,00	7,57	10,86	3,50	7,35	55,65		685152,376	5001131,594
3,70	4,40	9,45	10,97	4,35	6,62	62,56		684994,452	5001130,982
3,90	4,30	10,62	11,78	3,78	8,00	85,01		684998,396	5001117,300
3,50	4,50	9,01	11,46	4,32	7,14	64,32		684993,404	5001134,266
3,19	4,68	8,95	12,65	3,86	8,79	78,64		685002,605	5001114,059
3,80	4,80	9,12	13,27	4,06	9,21	84,02		685003,702	5001111,470
3,20	4,00	7,69	11,83	4,78	7,05	54,21		685000,572	5001111,473
2,70	4,08	6,98	11,08	3,49	7,59	53,00		685028,585	5001133,567
3,30	4,50	10,23	12,45	3,52	8,93	91,40		685139,564	5001131,389
3,04	3,89	6,87	12,05	4,53	7,52	51,64		685155,011	5001132,136
3,51	3,89	8,88	11,42	5,67	5,75	51,04		684979,300	5001133,635
3,50	3,70	8,08	11,92	4,18	7,74	62,51		685139,172	5001134,235
3,00	4,00	5,38	10,60	4,40	6,20	33,36		685052,893	5001116,567
4,08	5,34	11,66	12,42	5,31	7,11	82,86		684997,078	5001135,293
3,10	3,40	5,98	10,22	4,04	6,17	36,91		685050,523	5001116,674
2,96	3,57	6,41	12,49	5,90	6,59	42,26		685031,564	5001110,071
3,00	3,00	5,17	10,09	5,34	4,75	24,54		685051,499	5001134,126
3,40	3,50	7,26	9,21	3,95	5,26	38,17		685151,590	5001111,120
3,30	4,80	9,50	11,27	3,55	7,73	73,40		685154,204	5001131,002
2,90	3,50	5,36	12,10	4,41	7,69	41,22		685054,889	5001133,252
3,82	4,39	10,44	10,26	5,51	4,75	49,62		684977,945	5001112,230
3,50	5,50	9,35	12,04	3,95	8,09	75,62		685042,527	5001130,821
·		-						<u> </u>	· ·
3,83	5,14	9,26	12,17	5,25	6,92	64,10		685043,759	5001109,680
2,98	4,46	7,97	12,01	4,59	7,42	59,11		685037,232	5001135,507
3,45	4,04	7,24	9,30	5,02	4,29	31,03		684980,907	5001137,037
3,95	4,85	10,46	11,50	4,87	6,62	69,27		684993,642	5001137,153
3,70	4,60	7,51	9,74	3,97	5,78	43,38		685091,089	5001117,293
3,10	3,50	6,14	8,75	4,05	4,70	28,88		685087,745	5001116,856
3,40	4,00	8,61	12,65	5,94	6,71	57,80		684947,833	5001129,490
2,89	3,46	5,90	12,52	5,64	6,88	40,57		684945,010	5001129,599
3,40	3,50	6,46	12,36	5,78	6,58	42,49		684945,640	5001126,093
3,80	3,90	7,26	12,85	5,92	6,92	50,26		684948,873	5001123,911
2,50	3,90	5,52	10,95	5,76	5,19	28,63		684947,123	5001120,653
4,10	4,20	7,39	11,41	4,29	7,12	52,60		684982,899	5001127,941
3,79	5,08	10,43	11,85	4,80	7,05	73,56		684979,396	5001127,472
3,06	4,28	7,02	11,09	3,47	7,63	53,56		684996,253	5001125,085
5,50	5,70	16,38	11,93	3,07	8,86	145,06		685038,966	5001127,008
3,20	3,30	6,35	12,18	5,40	6,79	43,10		684984,203	5001122,213
2,83	3,39	5,41	12,29	6,33	5,96	32,24		684981,187	5001121,517
3,40	4,30	9,06	12,42	3,30	9,11	82,58		685051,031	5001126,807
3,20	3,40	6,45	10,00	3,58	6,42	41,39		685048,806	5001123,352
2,70	3,50	5,99	10,15	3,28	6,87	41,15		685054,903	5001124,671
3,73	5,19	11,56	11,49	3,90	7,59	87,79		685039,821	5001123,066
3,35	3,92	8,77	11,93	3,71	8,22	72,05		685087,884	5001129,373
2,87	3,50	5,29	10,74	3,54	7,20	38,07		685051,830	5001123,815
3,60	4,80	9,64	10,44	3,31	7,12	68,68		685088,679	5001126,438
3,28	4,12	8,70	9,94	4,39	5,55	48,30		685085,549	5001125,984
3,73	4,93	10,63	10,82	3,87	6,95	73,93		685089,420	5001123,445
3,29	4,44	10,03	11,16	3,94	7,21	72,36		685055,984	5001121,155
3,90	4,20	9,86	9,68	3,71	5,97	58,89		685086,152	5001123,162

Tabella 14 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
2,94	3,44	5,60	10,46	4,34	6,11	34,24		685050,027	5001119,511
3,80	4,49	8,05	12,14	5,58	6,56	52,80		684961,539	5001126,426
3,30	4,10	7,44	10,04	4,55	5,49	40,85		685030,220	5001136,700
3,40	4,10	8,20	10,18	4,53	5,65	46,32		685087,282	5001119,689
3,32	4,79	9,81	11,26	4,26	7,00	68,71		685089,911	5001120,092
4,13	5,02	10,24	12,81	3,79	9,01	92,30		685013,301	5001129,148
3,21	5,27	10,55	11,91	3,67	8,24	86,95		685017,149	5001126,810
3,10	3,60	6,60	13,45	5,87	7,58	50,03		684963,099	5001120,816
3,05	3,99	6,93	12,90	6,24	6,66	46,17		684966,212	5001121,360
3,10	3,90	6,37	10,88	4,30	6,58	41,89		685013,936	5001125,385
3,90	5,40	10,67	12,41	6,87	5,54	59,12		684999,556	5001125,977
4,00	4,20	10,11	11,09	3,49	7,60	76,87		685014,714	5001122,764
5,20	5,20	14,68	12,09	5,48	6,61	97,09		685000,649	5001123,119
3,78	4,37	9,66	9,96	4,10	5,86	56,66		685153,747	5001128,702
4,30	4,80	10,96	11,62	3,48	8,14	89,21		684997,000	5001122,139
3,50	5,45	10,01	11,74	3,16	8,58	85,91		685105,038	5001126,534
4,00	4,50	9,53	8,47	4,03	4,44	42,35		685101,073	5001126,196
2,89	3,44	5,80	10,40	3,50	6,90	40,00		684997,231	5001119,727
2,53	4,51	5,60	9,15	4,58	4,57	25,60		685153,730	5001125,710
4,40	5,40	12,73	11,01	3,76	7,25	92,34		685137,074	5001126,228
3,14	4,83	10,14	13,13	4,40	8,72	88,47		685001,239	5001120,220
4,30	5,20	11,63	10,66	2,95	7,71	89,66		685156,585	5001115,757
4,40	4,60	10,27	12,22	3,02	9,21	94,57		685140,897	5001125,594
2,73	4,00	8,11	11,30	5,16	6,14	49,78		685105,356	5001123,869
3,20	4,93	6,83	10,23	3,80	6,43	43,92		685102,006	5001123,869
4,50	4,77	12,75	10,23	4,15	6,61	84,28		685105,680	5001123,282
		,							5001120,084
4,13	6,47	10,51	11,07	2,91	8,16	85,77		685141,418 684996,886	· ·
3,35	4,51	8,39	12,06	4,78	7,28	61,07		685137,726	5001138,181
4,00	5,10	12,67	9,52	3,27	6,25	79,15		,	5001122,584
4,00	4,50	12,03	8,97	3,90	5,07	60,99		685102,350	5001120,444
3,93	4,59	9,48	9,62	3,89	5,73	54,34		685119,148	5001126,141
3,80	4,20	9,34	10,43	2,85	7,58	70,83		685151,012	5001137,281
3,44	4,39	9,24	10,21	3,24	6,97	64,38		685066,109	5001129,720
4,40	4,50	10,86	11,18	2,85	8,33	90,46		685138,061	5001137,505
3,07	4,36	7,42	10,16	3,78	6,37	47,30		685152,537	5001140,634
3,65	4,06	8,36	8,47	4,59	3,88	32,47		684992,986	5001139,980
3,40	4,80	9,82	11,24	4,06	7,18	70,51		685154,134	5001138,712
3,05	4,55	7,65	9,24	3,16	6,07	46,47		685149,916	5001140,903
3,85	4,77	9,88	10,55	4,05	6,50	64,20		685029,320	5001140,256
3,50	3,50	7,52	9,50	0,86	8,65	65,03		685026,001	5001141,952
4,33	4,55	9,70	8,72	4,64	4,09	39,64		684995,078	5001143,815
3,60	4,00	8,31	12,02	3,21	8,80	73,16		685136,987	5001141,007
2,21	3,93	5,60	8,95	3,73	5,22	29,24		685034,846	5001141,957
3,00	3,90	7,27	9,86	3,40	6,47	47,02		685152,954	5001144,018
3,50	3,70	7,26	10,32	3,92	6,40	46,49		685025,679	5001144,561
4,00	4,20	9,93	11,14	4,36	6,78	67,30		685029,154	5001143,481
4,00	4,10	8,11	8,52	3,06	5,46	44,28		685148,194	5001145,860
3,27	3,78	6,66	11,82	4,29	7,53	50,14		685034,597	5001144,485
3,17	3,63	7,39	9,82	3,47	6,34	46,87		685151,468	5001147,078
3,00	3,20	5,68	9,66	3,71	5,95	33,82		685025,018	5001147,768

Tabella 14 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
3,09	4,04	5,32	14,96	7,07	7,89	41,97		684956,236	5001085,378
3,00	3,30	5,00	14,61	5,95	8,66	43,29		684953,625	5001096,899
3,33	4,64	7,96	13,17	5,83	7,33	58,35		684949,098	5001120,955
3,90	4,30	8,46	14,47	4,99	9,47	80,15		684947,952	5001117,578
3,00	3,30	6,15	11,12	1,16	9,96	61,25		684959,779	5001135,572
3,10	3,50	5,71	10,94	6,22	4,72	26,95		684963,434	5001133,534
3,00	3,60	7,09	9,17	5,17	3,99	28,32		684962,580	5001136,218
3,10	3,40	6,36	11,69	5,10	6,59	41,94		684964,836	5001127,450
4,00	4,50	9,70	12,28	5,86	6,42	62,31		684965,786	5001124,241
2,90	3,10	5,31	12,19	5,65	6,54	34,74		684962,912	5001123,398
3,10	3,20	6,23	11,44	5,69	5,75	35,81		684966,404	5001105,525
3,45	4,51	10,04	13,24	5,00	8,24	82,76		684968,241	5001103,746
3,94	6,98	15,75	12,81	4,22	8,59	135,34		684969,552	5001107,992
3,29	3,94	6,89	11,95	4,61	7,33	50,53		684981,911	5001131,070
3,08	3,59	8,09	11,22	6,19	5,03	40,66		684978,865	5001130,650
2,67	3,61	6,18	12,91	6,59	6,32	39,04		684983,436	5001124,713
2,80	3,79	6,68	12,86	6,80	6,06	40,51		684980,320	5001124,115
2,40	4,00	6,63	12,39	4,76	7,62	50,54		684987,176	5001110,715
2,44	3,64	5,15	12,68	4,67	8,01	41,27		684983,695	5001109,921
3,58	5,64	10,53	12,83	5,48	7,35	77,35		684988,345	5001102,805
3,30	3,40	7,29	12,45	4,44	8,02	58,44		684985,574	5001101,744
3,00	3,40	6,13	11,65	4,89	6,76	41,41		684986,439	5001098,733
3,00	4,20	7,44	11,66	3,92	7,75	57,63		684987,544	5001095,352
4,40	5,00	11,28	7,58	2,73	4,85	54,70		685165,240	5001053,332
4,32	4,39	11,08	8,53	2,85	5,68	62,93		685168,536	5001150,115
3,80	4,40	8,51	7,52	2,79	4,73	40,24	8	685173,217	5001131,250
2,70	2,90	5,14	7,91	3,60	4,31	22,15	14	685171,192	5001130,130
2,40	3,40	5,52	9,69	3,25	6,44	35,54	11	685157,269	5001123,424
3,00	3,40	6,70	8,67	3,64	5,03	33,67		685154,188	5001123,121
2,80	3,10	5,58	11,20	3,33	7,87	43,92		685133,052	5001125,115
3,40	3,80	8,31	10,87	3,06	7,81	64,94		685132,496	5001148,842
2,60	4,30	6,39	9,22	3,29	5,93	37,86		685119,940	5001110,612
4,40	5,20	13,96	10,90	3,69	7,21	100,71		685123,315	5001124,635
3,50	3,90	7,93	12,13	5,66	6,47	51,31		684999,564	5001124,033
3,82		8,81	12,13	4,21	8,43	74,26		684995,747	5001128,040
3,72	4,17 4,86	11,73	12,04	4,21	8,03	94,20		685002,176	5001128,110
3,05	3,81	7,47	11,50	4,03	7,47	55,84		684999,182	5001116,947
4,20	4,60	8,21	12,35	4,05	8,30	68,13		685005,674	5001114,467
3,10	4,80	8,00		4,05	7,61	60,90		685010,149	5001100,026
			11,61	·				685010,149	· ·
3,40 3,40	4,60	7,96 8,29	11,87	5,00 5,05	6,87 6,49	54,66 53,79		685013,642	5001142,763
	4,20		11,53						5001141,815
3,10	4,64	8,12	12,17	4,68	7,49	60,80		685018,555	5001121,475
3,90	4,10	8,28	12,00	5,05	6,96	57,60		685015,579	5001119,472
2,80	4,20	5,18	12,00	4,81	7,19	37,24		685016,892	5001114,563
2,88	4,04	5,30	11,47	4,94	6,52	34,57		685015,484	5001116,896
3,70	3,80	7,72	13,51	5,09	8,42	64,99		685024,126	5001101,666
3,30	4,17	7,56	11,76	4,39	7,38	55,76		685024,787	5001098,406
3,36	5,02	9,17	9,48	3,79	5,69	52,14		685104,225	5001113,950
3,50	4,30	8,47	10,33	3,59	6,74	57,11		685032,997	5001149,721
3,40	4,00	7,08	11,41	4,94	6,48	45,85		685033,921	5001146,933

Tabella 14 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordina	ates (x;y)
3,85	4,87	10,37	12,68	3,97	8,70	90,27		685040,263	5001120,445
3,90	5,10	11,33	13,45	4,26	9,20	104,19		685041,283	5001117,871
3,60	3,68	9,01	13,43	4,44	9,00	81,08		685042,045	5001114,913
2,94	3,88	7,26	11,43	5,96	5,47	39,75		685027,487	5001149,045
2,70	4,20	7,15	11,97	3,63	8,34	59,64		685028,353	5001146,023
3,48	3,49	8,17	8,66	3,58	5,07	41,45		685027,601	5001136,136
3,60	4,00	8,00	9,33	3,82	5,51	44,09		685026,850	5001139,214
3,01	4,20	7,22	9,93	3,83	6,10	44,02		685102,820	5001128,996
2,88	3,15	5,27	9,47	4,80	4,67	24,62		685100,258	5001128,385
3,40	3,60	7,30	8,76	3,74	5,02	36,63		685093,074	5001158,072
3,68	3,79	7,01	10,72	3,66	7,06	49,49		685095,967	5001158,453
3,50	4,20	9,49	11,57	3,62	7,95	75,45		685064,197	5001138,138
3,01	5,08	7,65	11,13	3,10	8,03	61,41		685064,673	5001135,238
3,50	4,00	8,01	12,37	3,04	9,33	74,71		685050,955	5001141,918
3,70	3,80	7,58	13,11	3,12	9,99	75,70		685053,728	5001142,369

Tabella 14 - Impianto sperimentale AALSEA, Area Albertone "B", platano di 5,5 anni con 6 m² di superficie produttiva a disposizione.

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
4,70	4,80	12,39	20,44	8,04	12,40	153,59	28	619152,279	4980806,737
4,90	6,20	15,67	20,91	7,33	13,57	212,69	32	619211,886	4980793,046
4,04	4,45	9,09	19,37	6,95	12,42	112,86	32	619292,205	4980774,186
5,58	6,14	20,76	20,91	7,30	13,60	282,42	30	619223,378	4980790,595
3,60	5,10	9,39	21,72	7,22	14,50	136,16	28	619264,595	4980780,575
4,50	5,40	14,18	21,28	7,54	13,74	194,83	30	619168,831	4980802,595
4,07	4,23	8,46	20,07	6,96	13,10	110,84	32	619303,540	4980772,527
4,75	5,62	15,53	22,04	7,81	14,23	221,01	28	619147,256	4980807,917
4,47	5,61	13,97	21,29	7,60	13,69	191,24	30	619179,225	4980801,554
4,50	6,28	15,22	20,34	8,09	12,25	186,46	32	619131,509	4980812,428
4,99	5,30	15,32	21,94	7,20	14,74	225,74	30	619249,357	4980784,396
4,30	5,20	12,97	20,29	7,84	12,45	161,42	28	619162,938	4980804,085
3,10	5,00	8,64	20,22	7,74	12,48	107,84	30	619174,252	4980801,426
2,90	5,60	7,19	20,77	7,23	13,54	97,34	30	619275,896	4980777,249
4,60	5,10	12,61	19,95	7,35	12,61	158,97	30	619206,526	4980794,305
5,10	6,30	20,50	21,15	7,34	13,82	283,23	30	619238,563	4980786,715
5,35	6,46	17,75	21,99	7,24	14,75	261,74	32	619254,647	4980783,203
4,00	4,90	10,91	18,56	6,87	11,69	127,54	30	619308,330	4980771,424
5,80	6,00	20,93	20,58	7,24	13,33	279,06	34	619233,395	4980788,216
5,20	5,20	16,70	21,11	7,29	13,82	230,84	32	619228,315	4980789,108
5,24	5,83	17,41	21,20	7,15	14,05	244,65	30	619243,535	4980785,102
5,50	6,00	18,20	21,52	7,05	14,47	263,32	32	619297,967	4980773,952
4,08	5,97	14,04	21,68	7,40	14,28	200,46	30	619190,209	4980797,576
4,20	5,10	12,70	20,42	7,76	12,66	160,72	30	619126,184	4980813,883
3,70	4,50	10,14	20,24	8,14	12,10	122,67	36	619136,057	4980810,838
3,40	4,80	8,46	19,96	6,92	13,04	110,34	30	619281,128	4980776,598
4,52	6,00	15,71	21,63	6,95	14,69	230,70	30	619287,621	4980775,968
3,70	4,40	10,17	21,76	7,60	14,17	144,08	36	619184,846	4980799,622
5,00	5,20	15,61	21,97	7,22	14,75	230,26	26	619270,452	4980778,468
4,70	5,00	13,45	21,71	7,79	13,93	187,29	34	619157,787	4980805,585

Tabella 15 - segue pagina successiva

3,20				H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
5,20	4,50	9,63	19,61	8,02	11,59	111,61	30	619142,003	4980809,837
4,80	5,20	16,79	20,76	7,33	13,43	225,47	30	619216,991	4980792,157
4,30	5,00	12,27	20,97	7,45	13,52	165,87	20	619260,280	4980780,954
2,94	5,02	10,16	18,96	6,63	12,33	125,25	16	619345,279	4980782,826
3,01	3,49	5,21	Area_[mq]	7,70	12,19	63,49	30	619253,666	4980804,259
4,80	4,90	14,59	21,53	7,44	14,09	205,57	30	619195,153	4980818,037
4,60	5,70	13,07	20,27	7,55	12,72	166,24	34	619280,826	4980797,911
5,40	7,20	20,45	21,38	6,84	14,55	297,45	30	619307,805	4980792,173
4,20	6,00	14,26	21,40	6,78	14,62	208,48	34	619324,430	4980788,210
4,70	5,50	15,52	21,43	7,20	14,22	220,76	30	619227,039	4980809,990
5,00	5,00	13,81	20,87	7,64	13,23	182,71	32	619157,578	4980826,510
4,30	4,60	10,55	20,63	7,95	12,68	133,78	34	619178,686	4980822,231
4,37	5,60	15,40	20,98	7,14	13,83	213,00	26	619275,491	4980799,213
4,70	4,90	12,40	20,77	7,43	13,34	165,43	32	619184,253	4980819,800
4,62	5,98	17,44	21,05	7,14	13,91	242,59	28	619291,098	4980795,077
5,00	5,60	15,89	21,30	7,21	14,09	223,83	32	619249,008	4980804,595
4,10	5,30	10,89	19,76	7,36	12,40	135,03	28	619221,600	4980811,169
3,69	5,76	11,91	20,85	6,90	13,95	166,12	30	619200,408	4980816,588
3,90	5,76	12,25	21,48	6,72	14,76	180,85	28	619318,548	4980789,186
4,40	5,20	13,28	20,53	6,69	13,84	183,85	32	619339,496	4980784,019
4,29	5,37	13,26	20,89	7,28	13,60	180,38	30	619216,245	4980812,248
3,75	4,41	9,71	19,59	8,75	10,84	105,29	30	619146,088	4980828,382
4,76	6,05	17,30	19,16	6,79	12,37	213,97	30	619334,501	4980785,973
4,85	5,26	15,20	21,85	6,69	15,16	230,46	30	619152,295	4980826,683
3,92	5,04	10,51	19,34	8,44	10,89	114,49	32	619205,707	4980815,933
5,36	5,51	12,83	18,53	7,69	10,84	139,06	32	619135,720	4980831,805
3,55	7,20	15,72	21,17	8,11	13,06	205,32	28	619313,074	4980790,713
4,30	5,50	16,03	21,79	7,46	14,33	229,77	30	619237,654	4980807,401
3,60	4,80	8,57	19,28	7,46	11,82	101,26	30	619232,614	4980808,065
5,90	5,60	23,01	22,60	7,62	14,98	344,74	28	619169,049	4980823,695
3,40	5,60	11,14	20,33	7,61	12,72	141,68	28	619211,138	4980814,015
4,62	6,47	17,87	21,36	7,89	13,47	240,76	36	619270,092	4980798,734
4,60	4,60	11,49	19,64	7,48	12,16	139,71	32	619189,623	4980818,888
3,73	6,08	12,12	21,08	8,11	12,97	157,16	30	619243,657	4980806,323
5,26	7,00	23,23	21,10	6,82	14,28	331,68	32	619329,142	4980787,143
3,26	5,65	9,83	21,25	7,52	13,73	134,96	30	619174,030	4980822,244
3,54	6,27	13,29	22,54	7,70	14,84	197,22	30	619162,941	4980823,695
5,50	5,60	14,75	22,10	6,95	15,15	223,45	30	619302,298	4980793,296
4,10	5,60	12,95	21,02	6,89	14,14	183,09	32	619296,800	4980794,595
3,80	5,80	12,62	21,37	7,27	14,10	177,93	30	619264,714	4980801,078
4,15	6,92	17,23	22,26	7,28	14,98	258,16	28	619258,883	4980802,248
		12,70		7,36	13,54	171,91	32	619285,677	4980796,496
4,20 4,07	5,70 5,37	10,51	20,90 19,32	7,66	13,54	122,64	28	619285,677	4980830,219
3,60	6,40			8,06	13,10	149,89	32	619140,719	4980830,219
	·	11,44	21,16			+			4980845,753
4,16	7,24	13,19	19,80	7,08	12,72	167,74	32	619312,421	· ·
4,29	5,46	12,54	21,49	7,13	14,36	180,02	32	619258,564	4980823,229
3,72	5,80	9,81	20,61	6,84	13,77	135,06	28	619199,879	4980838,130
4,59	7,42	17,88	21,22	6,99	14,23	254,43	24	619269,085	4980821,190
4,70	5,40	15,88	21,47	7,11	14,36	227,97	32	619253,316	4980824,552

Tabella 15 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
3,90	5,40	14,18	20,28	7,68	12,60	178,65	30	619178,041	4980843,363
4,78	6,46	16,07	20,62	6,67	13,95	224,11	28	619333,604	4980806,775
4,10	8,30	19,26	21,64	6,97	14,68	282,68	28	619264,205	4980822,694
2,89	4,50	7,29	20,27	7,31	12,96	94,46	30	619226,770	4980831,327
4,70	6,10	16,21	19,06	7,94	11,13	180,35	26	619151,856	4980849,215
3,60	3,80	7,79	17,04	6,67	10,37	80,77	28	619349,715	4980803,067
4,20	6,90	14,12	21,44	7,66	13,77	194,47	32	619183,640	4980841,239
4,16	5,18	10,91	20,83	7,37	13,46	146,83	30	619205,030	4980836,538
5,30	7,30	23,04	21,35	6,97	14,39	331,48	28	619275,274	4980819,702
5,20	6,40	22,29	18,91	6,58	12,33	274,79	26	619354,913	4980801,789
4,40	5,10	15,34	19,48	6,66	12,82	196,67	32	619344,706	4980804,201
3,67	7,12	13,45	19,73	7,06	12,67	170,41	32	619285,966	4980818,109
4,03	5,84	10,14	20,70	7,40	13,30	134,86	26	619215,663	4980833,328
3,60	6,80	11,71	20,97	7,38	13,59	159,13	28	619210,987	4980834,287
4,20	5,44	10,81	20,59	7,73	12,87	139,07	26	619167,827	4980845,084
4,60	7,60	19,33	21,00	7,03	13,97	270,00	32	619280,231	4980818,351
3,35	4,10	9,28	20,14	7,66	12,48	115,85	24	619156,944	4980849,283
5,10	6,19	17,48	20,58	6,90	13,68	239,09	28	619301,785	4980814,280
4,10	4,40	10,87	20,06	6,84	13,22	143,66	26	619221,082	4980832,172
4,25	5,96	13,13	19,85	6,84	13,01	170,87	32	619296,066	4980815,749
4,10	6,80	16,15	21,58	7,02	14,56	235,11	22	619317,739	4980809,784
4,37	6,04	16,19	21,87	6,84	15,03	243,34	28	619328,541	4980807,486
4,40	5,99	10,54	20,24	7,40	12,84	135,33	30	619189,107	4980840,682
4,60	5,40	15,12	19,78	7,75	12,03	181,88	26	619146,194	4980850,207
6,50	6,90	25,31	21,25	6,71	14,54	367,98	28	619323,476	4980809,175
2,82	3,70	5,31	15,76	7,75	8,01	42,52	28	619172,899	4980845,093
4,71	6,12	19,07	21,53	6,90	14,63	279,05	28	619307,002	4980812,510
3,20	5,40	11,96	20,98	7,50	13,48	161,20	28	619232,003	4980829,579
4,90	5,48	14,05	20,02	6,61	13,41	188,37	26	619339,002	4980805,418
3,60	6,40	11,44	21,16	8,02	13,14	150,29	30	619162,676	4980845,753
4,16	7,24	13,19	19,80	7,08	12,72	167,74	28	619312,421	4980811,409
4,29	5,46	12,54	21,49	7,13	14,36	180,02	28	619258,564	4980823,229
3,72	5,80	9,81	20,61	7,52	13,08	128,34	26	619199,879	4980838,130
4,59	7,42	17,88	21,22	6,99	14,23	254,43	26	619269,085	4980821,190
4,70	5,40	15,88	21,47	7,11	14,36	227,97	26	619253,316	4980824,552
3,90	6,10	8,92	21,08	7,38	13,70	122,20	20	619194,556	4980838,699
3,90	5,40	14,18	20,28	7,68	12,60	178,65	18	619178,041	4980843,363
4,78	6,46	16,07	20,62	6,67	13,95	224,11	30	619333,604	4980806,775
4,10	8,30	19,26	21,64	7,13	14,51	279,54	30	619264,205	4980822,694
2,89	4,50	7,29	20,27	7,31	12,96	94,46	28	619226,770	4980831,327
4,70	6,10	16,21	19,06	7,94	11,13	180,35	28	619151,856	4980849,215
3,60	3,80	7,79	17,04	6,67	10,37	80,77	32	619349,715	4980803,067
4,20	6,90	14,12	21,44	7,66	13,77	194,47	30	619183,640	4980841,239
4,16	5,18	10,91	20,83	7,37	13,46	146,83	28	619205,030	4980836,538
5,30	7,30	23,04	21,35	6,97	14,39	331,48	32	619275,274	4980819,702
5,20	6,40	22,29	18,91	6,58	12,33	274,79	28	619354,913	4980801,789
4,40	5,10	15,34	19,48	6,66	12,82	196,67	34	619344,706	4980804,201
3,67	7,12	13,45	19,73	7,06	12,67	170,41	26	619285,966	4980818,109
4,30	5,80	10,14	20,70	7,40	13,30	134,86	28	619215,663	4980833,328
3,60	6,80	11,71	20,97	7,38	13,59	159,13	30	619210,987	4980834,287

Tabella 15 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
4,20	5,44	10,81	20,59	7,73	12,87	139,07	30	619167,827	4980845,084
4,60	7,60	19,33	21,71	7,03	14,68	283,76	30	619280,231	4980818,351
3,30	4,10	9,28	20,14	7,66	12,48	115,85	32	619156,944	4980849,283
5,10	6,19	17,48	20,58	6,90	13,68	239,09	30	619301,785	4980814,280
4,10	4,40	10,87	20,06	7,32	12,74	138,43	32	619221,082	4980832,172
4,25	5,96	13,13	19,85	6,84	13,01	170,87	32	619296,066	4980815,749
4,10	6,80	16,15	21,58	7,02	14,56	235,11	32	619317,739	4980809,784
4,37	6,04	16,19	21,87	6,84	15,03	243,34	30	619328,541	4980807,486
4,40	5,99	10,54	20,23	7,40	12,84	135,28	28	619189,107	4980840,682
4,60	5,40	15,12	19,78	7,75	12,03	181,88	32	619146,194	4980850,207
6,50	6,90	25,31	21,25	7,13	14,12	357,38	22	619323,476	4980809,175
2,82	3,70	5,31	15,75	7,75	8,00	42,50	32	619172,899	4980845,093
4,70	6,12	19,07	21,53	6,90	14,63	279,05	30	619307,002	4980812,510
3,20	5,40	11,96	20,98	7,50	13,48	161,20	30	619232,003	4980829,579
4,90	5,48	14,05	20,02	6,61	13,41	188,37	30	619339,002	4980805,418
4,59	4,81	14,06	20,52	7,16	13,36	187,86	30	619257,657	4980864,170
4,68	6,01	15,35	20,91	6,69	14,22	218,31	28	619321,253	4980849,610
5,29	6,47	18,98	20,24	6,60	13,65	258,98	30	619343,412	4980844,910
3,87	4,67	9,92	18,74	7,50	11,24	111,54	30	619187,455	4980881,423
4,53	6,10	15,77	19,41	7,47	11,94	188,21	26	619193,225	4980880,156
5,56	6,65	22,54	18,41	7,69	10,72	241,61	30	619155,107	4980888,324
4,29	4,66	12,07	20,90	6,88	14,02	169,17	22	619326,756	4980848,847
		15,17				· ·	32	619300,078	4980853,977
4,70 4,70	4,70 6,40	17,98	19,56 20,09	6,86	12,70	192,63	30	619268,215	4980853,977
	7,05	20,80		6,81		284,07	30	619331,552	4980846,318
4,70 5,00	6,10	18,44	20,46 19,06	6,75	13,66	227,01	26	619309,936	4980852,367
•				•	· ·		28		
4,80	6,60	18,54	20,19	7,02	13,17	244,25		619279,159 619246,856	4980858,856
6,10	6,40	22,60	20,25	7,14	13,11	296,24	28	,	4980866,847 4980842,106
5,28	6,81	19,50	19,96	6,87	13,09	255,31	30	619353,460	,
5,05	7,30	18,98	20,27	7,17	13,10	248,64	30	619263,418	4980863,896
5,20	5,80	17,84	19,96	7,66	12,30	219,50	30	619171,947	4980884,835
5,20	6,00	20,68	18,79	7,26	11,53	238,48	28	619219,292	4980873,401
3,82	7,11	12,45	18,92	7,60	11,33	141,00	28	619161,850	4980887,992
4,20	6,80	17,61	20,27	7,52	12,75	224,60	30	619176,995	4980883,704
4,40	5,06	13,41	20,14	6,85	13,29	178,19	30	619289,336	4980857,060
5,90	6,60	22,31	20,75	6,59	14,16	315,98	28	619348,641	4980843,013
4,60	6,60	16,90	19,85	6,85	13,00	219,70	28	619305,089	4980853,239
4,60	5,10	13,84	20,29	7,35	12,94	179,06	32	619252,602	4980865,510
4,13	6,01	14,23	19,64	7,43	12,21	173,76	20	619181,633	4980882,317
5,70	5,80	16,97	20,44	6,75	13,69	232,29	30	619316,163	4980851,250
6,20	6,90	22,65	20,31	6,47	13,84	313,48	28	619364,767	4980839,570
4,90	6,80	19,18	20,62	6,66	13,96	267,73	28	619337,360	4980845,315
4,10	6,30	13,85	21,71	7,14	14,57	201,84	30	619236,014	4980870,304
5,30	6,30	15,78	20,84	7,17	13,66	215,57	32	619230,708	4980870,978
5,48	6,89	20,77	21,20	6,97	14,22	295,43	32	619273,734	4980859,715
3,86	5,74	8,88	19,85	7,76	12,10	107,41	30	619166,046	4980886,381
4,40	4,60	10,19	18,76	7,73	11,03	112,42	34	619214,274	4980874,481
4,40	5,40	13,18	17,83	6,91	10,93	144,03	30	619293,936	4980856,610
5,40	5,50	15,62	18,83	7,35	11,49	179,41	32	619203,277	4980877,556
6,20	6,80	22,86	20,04	6,49	13,55	309,71	32	619358,838	4980841,406

Tabella 15 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordin	ates (x;y)
6,70	7,00	24,19	19,57	7,38	12,20	295,07	30	619225,453	4980872,371
4,44	5,17	13,71	20,55	7,14	13,41	183,78	30	619240,921	4980868,131
4,80	5,50	14,56	20,32	7,29	13,03	189,70	34	619209,163	4980875,521
5,70	7,10	25,41	20,97	6,87	14,11	358,43	34	619293,962	4980875,605
5,15	7,45	21,09	20,31	7,65	12,67	267,13	32	619170,991	4980905,820
4,40	5,10	15,93	19,41	7,41	11,99	191,06	30	619187,643	4980901,086
4,35	4,91	12,39	21,10	7,19	13,91	172,37	32	619282,871	4980878,757
4,60	5,56	14,80	20,95	7,84	13,12	194,10	32	619160,272	4980908,013
4,80	6,80	19,41	21,33	7,62	13,71	266,11	32	619213,873	4980894,581
4,30	6,30	17,27	19,52	7,21	12,31	212,59	32	619240,353	4980889,247
4,74	5,67	16,86	20,34	6,67	13,67	230,54	30	619332,007	4980867,338
									<u> </u>
5,62	6,81	20,65	21,01	6,69	14,32	295,71	32	619354,382	4980861,984
4,96	6,40	18,20	21,46	7,03	14,43	262,66	30	619305,201	4980873,336
5,50	5,60	16,86	19,83	7,00	12,83	216,23	32	619266,372	4980881,989
4,43	6,52	18,78	20,04	7,17	12,87	241,77	30	619235,262	4980889,670
6,54	6,80	22,02	22,05	6,94	15,11	332,66	32	619278,353	4980879,505
4,87	6,95	18,00	20,73	7,26	13,47	242,44	28	619225,351	4980892,946
4,02	6,02	13,44	21,32	6,67	14,65	196,88	30	619359,213	4980860,868
5,50	5,90	17,18	21,48	7,29	14,19	243,80	32	619219,477	4980894,831
5,78	6,19	21,78	18,18	6,46	11,72	255,31	30	619369,735	4980858,870
6,20	6,30	23,83	20,90	6,84	14,06	335,03	26	619310,271	4980872,393
5,22	7,16	21,51	21,05	6,78	14,26	306,82	30	619321,680	4980870,381
5,04	5,92	16,09	20,82	7,44	13,39	215,38	30	619208,900	4980896,072
4,60	7,60	20,83	20,69	7,53	13,16	274,10	26	619182,179	4980902,849
5,60	7,40	22,08	20,41	7,47	12,94	285,78	26	619198,512	4980898,294
4,70	5,30	15,21	19,85	7,47	12,39	188,39	28	619192,408	4980899,945
4,60	4,70	11,06	21,29	7,10	14,18	156,86	28	619261,393	4980883,514
4,80	6,93	16,73	21,79	6,55	15,24	255,00	28	619347,829	4980863,499
5,60	6,08	21,33	21,03	6,87	14,16	301,99	28	619288,506	4980877,607
5,03	6,31	19,61	21,85	6,79	15,06	295,33	28	619316,106	4980871,641
5,60	7,10	24,14	21,03	7,53	13,50	325,84	30	619176,669	4980904,420
6,00	7,60	21,22	21,18	7,17	14,01	297,21	30	619229,759	4980891,064
4,90	6,60	19,86	21,45	6,49	14,96	297,07	30	619364,930	4980859,621
4,30	4,80	10,01	20,91	7,06	13,85	138,64	28	619342,090	4980865,248
5,08	6,86	16,96	19,02	7,27	11,74	199,18	28	619272,223	4980880,644
6,00	6,90	22,77	19,40	7,04	12,36	281,46	30	619256,643	4980884,666
5,90	7,70	26,91	22,13	6,87	15,26	410,51	28	619299,717	4980874,515
5,60	6,00	19,72	21,67	7,18	14,49	285,64	28	619250,971	4980885,916
5,10	6,90	18,25	21,67	6,70	14,96	273,09	28	619337,309	4980866,399
5,10	6,30	18,25	21,01	7,24	13,77	251,30	28	619245,392	4980887,425
5,70	6,70	20,83	21,03	7,33	13,70	285,39	34	619203,515	4980898,428
4,40	6,60	15,56		6,86		227,92	32	619327,172	4980868,550
			21,51		14,65				· ·
4,77	7,28	18,57	20,79	7,55	13,23	245,74	30	619165,265	4980907,689
5,90	7,50	23,69	20,88	6,79	14,10	333,91	32	619304,640	4980895,463
6,10	8,20	28,05	20,02	7,32	12,70	356,32	20	619223,571	4980912,576
4,09	6,90	18,69	20,98	6,99	13,99	261,55	32	619266,520	4980902,657
4,60	5,90	14,58	18,50	7,07	11,43	166,62	26	619250,419	4980907,167
4,60	6,20	16,41	19,57	6,58	12,99	213,18	24	619351,768	4980882,251
5,20	6,40	20,59	18,85	7,38	11,47	236,23	22	619197,182	4980919,341
4,85	0,82	20,68	17,41	7,34	10,07	208,23	28	619218,389	4980914,522

Tabella 15 - segue pagina successiva

Width (m)	Length (m)	Area (m²)	H max (m)	H leaf (m)	H depht (m)	Volume (m³)	Diameter (cm)	Coordinates (x;y)	
3,82	6,67	14,51	19,78	7,04	12,74	184,84	32	619277,326	4980901,010
5,20	6,20	18,18	18,11	7,28	10,83	196,96	30	619213,431	4980915,188
5,80	7,30	27,43	20,55	7,24	13,31	365,12	28	619256,056	4980904,940
5,40	6,10	18,95	20,40	6,65	13,75	260,62	32	619346,880	4980884,208
5,76	8,20	25,98	19,02	6,78	12,24	317,87	30	619207,251	4980916,638
5,60	6,60	22,57	18,70	7,52	11,18	252,38	28	619171,146	4980925,478
4,80	6,40	16,85	20,15	6,67	13,48	227,12	32	619330,630	4980888,009
6,21	7,15	21,68	19,20	7,07	12,13	263,00	32	619309,032	4980893,584
5,80	6,30	19,09	18,61	7,43	11,18	213,33	30	619180,338	4980922,944
4,82	7,08	17,91	17,14	7,49	9,65	172,76	32	619186,150	4980922,255
4,40	6,30	15,67	20,44	7,04	13,40	209,99	30	619325,148	4980889,557
4,16	6,15	14,41	19,70	6,96	12,74	183,61	34	619292,904	4980895,435
5,40	7,50	22,87	20,16	7,03	13,14	300,42	32	619261,248	4980903,094
6,83	7,66	28,68	19,54	7,25	12,29	352,51	30	619240,245	4980909,330
4,52	7,84	20,94	20,23	7,01	13,22	276,91	32	619298,287	4980894,388
5,40	7,90	25,13	19,71	6,65	13,07	328,35	34	619368,254	4980878,886
6,21	7,81	24,71	20,64	7,01	13,63	336,90	32	619272,002	4980902,010
4,94	7,16	19,00	21,00	7,01	13,99	265,89	32	619282,435	4980898,821
3,80	6,50	12,74	19,99	7,50	12,50	159,20	32	619245,353	4980907,469
4,30	5,00	13,51	18,17	7,52	10,64	143,79	32	619164,929	4980927,435
4,80	5,20	15,70	20,38	6,75	13,64	214,07	32	619335,911	4980886,628
4,50	6,20	14,96	19,40	6,70	12,70	190,02	30	619319,527	4980890,347
5,60	7,20	21,24	18,86	7,17	11,69	248,21	36	619229,374	4980911,194
4,90	5,20	16,54	20,29	6,56	13,73	227,06	32	619357,615	4980881,041
6,50	6,80	26,28	20,49	6,63	13,86	364,24	36	619341,456	4980885,435
5,10	6,10	18,91	19,71	7,15	12,56	237,57	32	619234,427	4980910,927
4,72	7,58	17,49	20,84	6,94	13,90	243,11	30	619287,672	4980897,366
2,60	4,50	5,69	14,58	8,07	6,52	37,09	32	619191,282	4980920,401
4,65	6,94	17,28	19,41	6,73	12,67	218,97	30	619314,491	4980891,724
5,23	7,11	19,64	18,65	6,69	11,96	234,93	34	619201,879	4980917,767
7,50	7,90	36,32	20,56	6,50	14,06	510,55	32	619374,068	4980877,647
5,84	7,69	27,20	20,34	6,63	13,71	372,80	32	619362,931	4980880,075

Tabella 15 - Impianto sperimentale AALSEA, Area Gardini, pioppo 'I-214' con 120 m² di superficie produttiva a disposizione.

REPORT SULL'ANDAMENTO DELL'ACCRESCIMENTO NELLE PIANTAGIONI 3P

Rilievi con sistema LiDAR terrestre (Terrestrial Laser Scan - TLS)

Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria Centro Foreste e Legno di Arezzo (CREA FL)

Natura dell'incarico

Lo scopo del lavoro è derivare con sensore TLS le seguenti misure:

- 1. altezza totale;
- 2. altezza di inserzione del ramo verde situato più in basso nel fusto;
- 3. altezza della foglia situata più in basso;
- 4. profondità della chioma (considerando solo la parte fotosinteticamente attiva)
- 5. volume della chioma (considerando solo la parte fotosinteticamente attiva);
- 6. volume del fusto fino ad un diametro di 20 cm;
- 7. diametro a 130 cm da terra;
- 8. asse (diametro) della chioma lungo il filare;
- 9. asse (diametro) della chioma ortogonalmente al filare.

I rilievi hanno riguardato, come richiesto, un minimo di **260 alberi** nelle seguenti piantagioni da legno:

- Gazzo Veronese (VR) piantagioni LIFE+ InBioWood [min. n. 100 alberi]
- Villa Bartolomea (VR) [min. n. 40 alberi]
- Viadana (MN) [min. n. 120 alberi]

Prima dei rilievi è stata effettuata una ricognizione insieme al personale incaricato dal progetto LIFE+ InBioWood. Come richiesto, il rilievo dei dati è stato condotto entro il mese di **dicembre 2017**, e la consegna del materiale elaborato entro il mese di **gennaio 2018**.

Tutte le rilevazioni sono state svolte da personale altamente specializzato nell'acquisizione e processamento dati derivati da Laser Scanner Terrestre (TLS) del CREA - *Centro di Ricerca Foreste e Legno*.

Struttura della cartella di consegna

Come richiesto dal committente, la consegna di tutti i file avviene tramite cartella Drive *Consegna_Febbraio2018* condivisa con l'account <u>grafica@compagniadelleforeste.it</u>.

Oltre al presente file, la cartella è costituita dai seguenti file:

- · Appunti per rilievi
- Piedilista
- Risultati al 12 gennaio 2018.odp
- Siti di rilievo

e dalle seguenti sotto-cartelle:

- Foto
- Screenshots dal software

(*) Appunti per rilievi

Il **file** contiene degli appunti relativi ai rilievi preliminari fatti per definire con dettaglio le aree di interesse. Pertanto, si rimanda a questo file per una descrizione dettagliata delle attività svolte nelle diverse AREE/SITO. In sintesi, le AREE sono Gazzo Veronese (VR), Villa Bartolomea (VR) e Viadana (MN). I SITI sono tre per Gazzo V., uno con due specie per Villa B., tre per Viadana.

(*) Presentazione dei risultati

Il **file** riporta i risultati discussi in gennaio con il committente.

(**) Foto

La **cartella** contiene immagini reperite nei diversi siti. Nella tabella presente nel documento "Appunti per rilievi", sono listati gli ID delle foto fatte nei diversi siti.

(**) Screenshots dal software

La **cartella** contiene alcuni screenshots catturati usando il *software* di gestione delle nuvole di punti (Trimble RealWorks®).

A valle della presentazione finale, è stato realizzato un video sintetico del funzionamento dello strumento ai fini della commessa presente al link: www.youtube.com/watch?v=Ou0lbedoc10

Contenuto dello zip file

Sono presenti 4 file ods (LibreOffice). I primi 3 fanno riferimento allo schema riportato nella tabella del file "Appunti di rilievo" e contengono i campi:

- Treeld: identificativo dell'albero campione
- DBH: diametro a 1.30 metri misurato con TLS
- Htot: altezza totale misurata con TLS
- Hchioma: profondità della chioma (Htot Hfoglia verde)
- Hramo: altezza del ramo verde con TLS
- Hfogliaverde: altezza foglia verde con TLS
- CrownVol_m3_Hramo: volume della chioma usando tecniche voxel sulla nuvola di punti e avendo come riferimento Htot e Hramo
- CrownVol_m3_Hfoglia: volume della chioma usando tecniche voxel sulla nuvola di punti e avendo come riferimento Htot e Hfogliaverde
- CrownAreaMax: superficie del voxel di chioma massimo
- H_CrownAreaMax: altezza della massima area di insidenza

- vol_cil_m3: volume cilindrometrico del fusto derivato da integrazione di misure TLS
- età: età delle piante al momento del rilievo 2017

1. Risultati Gazzo veronese

- misure TLS effettuate su 21 piante di pioppo
- Gazzo b: misure TLS effettuatesu 19 piante di pioppo

2. Risultati Villa Bartolomea

- Villa Bartolomea pioppi: contiene misure TLS effettuate su 18 piante di pioppo
- Villa Bartolomea platani: contiene misure TLS effettuate su 34 piante derivate da filari di platano

3. Risultati Viadana

- Viadana a 400: misurazioni di fusto e chioma su 12 piante con distanza intrafilare pari a 4 metri
- Viadana a 450: misurazioni di fusto e chioma su 12 piante con distanza intrafilare pari a 4,5 metri
- Viadana a 500: misurazioni di fusto e chioma su 12 piante con distanza intrafilare pari a 5 metri
- Viadana b: contiene misure TLS effettuate su 19 piante di pioppo
- Viadana c: contiene misure TLS effettuate su 103 piante di pioppo.

Appunti generali

Sopralluoghi di martedì 11 e 12 luglio 2017

presenti Nicola Puletti e Paolo Mori

Attività dei due giorni: Visita preliminare alle aree di rilievo LIFE+ InBioWood di Gazzo Veronese (a-b-c), Villa Bartolomea (a-b) e Viadana (a-b).

Area	Sito	Descrizione generale
Gazzo (parzialmente corrispondente alle aree denominate Tartaro A, B e C nel rapporto sui rilievi DIBAF)		Pioppi a pieno campo lungo fiume Tartaro, anni 4 a fine stagione. Visitata 11 luglio. Acquisito punto GPS, foto n. 853
Gazzo (parzialmente corrispondente alle aree denominate Tione A e B nel rapporto sui rilievi DIBAF)		Pioppi infilare lungo fiume Tione, anni 2 a fine stagione. Visitata 11 luglio. Acquisito punto GPS, foto n. 854/855
Gazzo	С	Filari di platano ceduati di 4,5 e 6 anni
Area	Sito	Descrizione generale
Villa Bartolomea (parzialmente corrispondente alle aree denominate ALBERTONE A e B nel rapporto sui rilievi DIBAF)		Policiclico di pioppo e platano non ceduato, entrambi di 6 anni a fine stagione. Visitata 11 luglio. Acquisito punto GPS, foto n. 856/857/858
Area	Sito	Descrizione generale
Viadana (parzialmente corrispondente all'area denominata PANGUANETA nel rapporto sui rilievi DIBAF)		Pioppo, anni 10 a fine stagione. Visitata 11 luglio. Acquisito punto GPS, foto di esempio n. 864/865
Viadana (parzialmente corrispondente all'area denominata GARDINI nel rapporto sui rilievi DIBAF)	b	Pioppo, anni 7 a fine stagione. Visitata 11 luglio. Acquisito punto GPS, foto n. 859/860/861/862/863
Viadana		Pioppo tradizionale di: 4 anni (punto GPS: viadana c 4; foto n 871/872) 6 anni (punto GPS: viadana c; foto n 866; solo parte sinistra alla strada interna al popolamento) 8 anni (punto GPS: viadana c 8; foto 869/870) 9 anni (punto GPS: viadana c 9, foto n 867/868, solo parte destra alla strada interna al popolamento) 10 anni (punto GPS: viadana c 10, foto n 873) Visitata 12 luglio

Rilievi aggiuntivi rispetto all'incarico hanno riguardato l'impianto policiclico a termine con Clone NEVA, di 13,5 anni, situato in Valle dell'Oca.

Rilievi aggiuntivi rispetto all'incarico hanno riguardato l'impianto policiclico a termine con Clone NEVA, di 13,5 anni, situato in Valle dell'Oca.

Materiale e strumentazione utilizzata per il rilievo:

- TLS + relative sfere + specifici fogli target (scacchi)
- paline
- stampati per numerare piante
- rotella metrica
- vernice spray colore blu (usata per segnare piante)
- n.2 schede SD
- pennato

Immagini scansioni LiDAR

Di seguito si presentano alcune immagini con le nuvole di punti che permettono di ricostruire o dettagli di ogni pianta rilevata. Quelle riportate di seguito sono solo alcune delle innumerevoli posizioni e dei possibili ingrandimenti di dettaglio che è possibile effettuare su ciascuna pianta considerata.

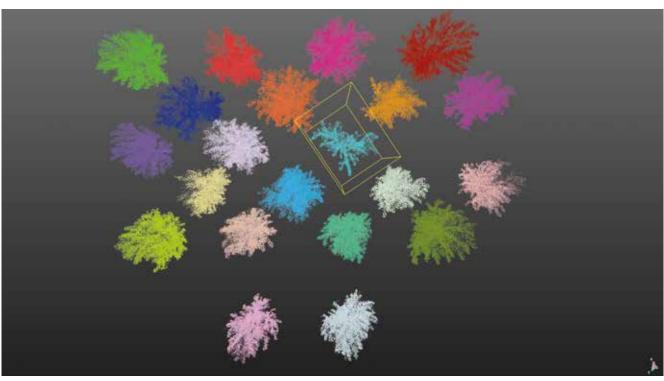


Figura 1 - Immagine in falsi colori su disposizione delle chiome di pioppi 'I-214' di 3,5 anni rilevati nelle Piantagioni 3P LIFE+ InBioWood a pieno campo di Gazzo Veronese (VR).

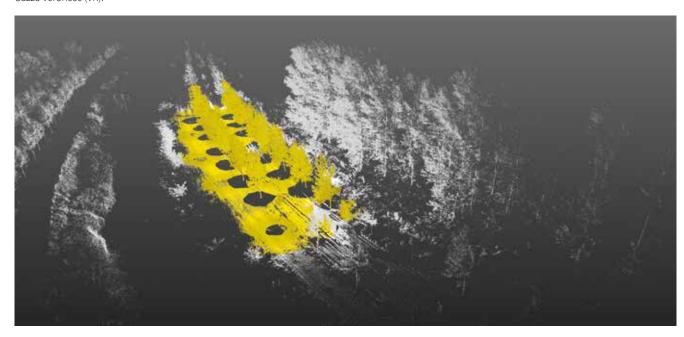


Figura 2 - Immagine in falsi colori di una porzione di impianto in doppio filare di pioppi 'I-214' di 3,5 anni rilevati nelle Piantagioni 3P LIFE+ InBioWood di Gazzo Veronese (VR).

Figura 3 - Immagini in falso colori di pioppi 'I-214' di 5,5 anni rilevati nell'impianto sperimentale AALSEA di Villa Bartolomea (VR).

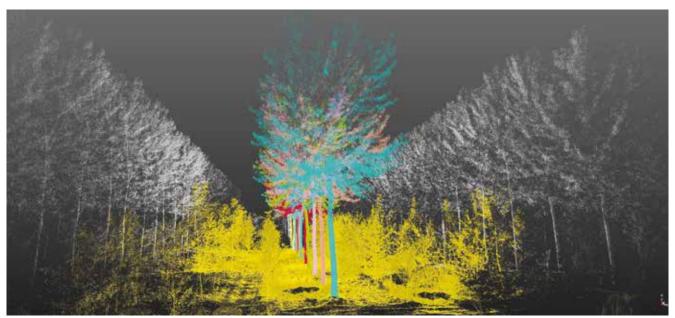


Figura 4 - Immagine in falsi colori di una porzione dell'impianto policiclico sperimentale AALSEA "Viadana B" (Gardini) di 6,5 anni con pioppo '1-214', noce, farnia, ontano nero e platano.

Figura 5 - Immagine a colori di piantagione policiclica Viadana A (Panguaneta) di 9,5 anni composta da pioppo 'I-214', farnia e ontano nero.

Risultati dei rilievi

In questo rapporto la numerazione delle tabelle, al fine di essere facilmente individuabile nelle considerazioni finali, prosegue quel-

la adottata nel rapporto DIBAF effettuata con un sensore LiDAR montato su drone.

Treeld	DBH	Htot	Hchioma	Hramo	Hfogliaverde	CrownVol (m³) Hramo	CrownVol (m³) Hfoglia	CrownArea Max	H Crown AreaMax	vol cil (m³)	età
tree01ok.asc	22	13,8	11,48	2,18	2,32	156,01	155,86	23,6203	6,53	0,26	3,5
tree02ok.asc	21	13,6	10,01	4,16	3,59	98,35	101,14	16,1534	5,84	0,24	3,5
tree03ok.asc	23	14,5	11,42	3,94	3,08	146,65	150,77	22,8586	5,63	0,30	3,5
tree04ok.asc	20	14,8	12,26	3,92	2,54	114,76	121,78	20,0477	6,59	0,23	3,5
tree05ok.asc	21	14,2	11,99	3,39	2,21	156,16	160,77	33,4696	7,16	0,25	3,5
tree06ok.asc	20	13,6	10,70	3,23	2,90	114,51	115,74	16,5112	6,95	0,21	3,5
tree07ok.asc	20	13,4	10,24	4,28	3,16	105,46	108,51	19,0365	6,01	0,21	3,5
tree08ok.asc	21	14,8	10,86	4,47	3,94	146,38	152,39	19,4073	11,59	0,26	3,5
tree09ok.asc	23	15	12,34	4,40	2,66	170,49	176,82	26,2704	10,31	0,31	3,5
tree10ok.asc	21	14,8	12,54	3,49	2,26	156,28	160,21	26,2160	11,11	0,26	3,5
treellok.asc	18	13,5	11,34	3,27	2,16	120,49	125,4	18,6971	4,71	0,17	3,5
tree12ok.asc	23	10,6	6,44	5,29	4,16	41,66	46,55	18,4966	6,41	0,22	3,5
tree13ok.asc	23	15,3	11,41	4,88	3,89	161,06	170,76	24,5833	11,24	0,32	3,5
tree14ok.asc	20	14,8	11,81	4,24	2,99	100,71	108,17	17,3991	10,34	0,23	3,5
tree15ok.asc	24	14,9	11,32	4,22	3,58	189,75	192,58	29,8303	8,23	0,34	3,5
tree16ok.asc	19	13,4	11,39	3,42	2,01	124,1	134,21	23,4374	5,46	0,19	3,5
tree17ok.asc	21	14,3	10,91	4,70	3,39	116,78	129,35	20,3832	6,84	0,25	3,5
tree18ok.asc	20	14,7	11,73	3,82	2,97	101,65	105,23	13,1290	4,62	0,23	3,5
tree19ok.asc	23	14,9	12,22	4,09	2,68	161,91	169,09	23,7740	11,23	0,31	3,5
tree20ok.asc	19	13,4	11,04	3,23	2,36	128,69	131,55	20,7594	4,91	0,19	3,5
tree21ok.asc	19	13,2	10,34	3,92	2,86	102,96	108,73	18,4722	7,81	0,19	3,5

 Tabella 16 - LIFE+ InBioWood, Area Gazzo Veronese "A", pioppo 'I-214' di 3,5 anni.

Treeld	DBH	Htot	Hchioma	Hramo	Hfogliaverde	CrownVol (m³) Hramo	CrownVol (m³) Hfoglia	CrownArea Max	H Crown AreaMax	vol cil (m³)	età
tree01ok.asc	12	8,4	6,42	2,33	1,98	39,58	41,95	11,9675	3,63	0,05	1,5
tree02ok.asc	10	7,4	4,98	3,18	2,42	25,45	28,81	10,6151	4,37	0,03	1,5
tree03ok.asc	11	8,3	6,10	2,98	2,20	38,49	43,31	12,5375	4,15	0,04	1,5
tree04ok.asc	13	8,9	6,68	2,64	2,22	46,69	50,03	13,8941	3,57	0,06	1,5
tree05ok.asc	12	9	7,00	3,13	2,00	45,54	52,27	15,3659	4,25	0,05	1,5
tree06ok.asc	12	9,6	7,66	3,02	1,94	51,71	55,68	15,2714	4,49	0,05	1,5
tree07ok.asc	13	8,8	6,72	3,25	2,08	51,55	56,69	15,4119	4,63	0,06	1,5
tree08ok.asc	12	9,3	7,16	2,98	2,14	50,35	54,95	13,5471	3,79	0,05	1,5
tree09ok.asc	9	7,2	5,14	2,48	2,06	28,58	30,15	9,8261	4,31	0,02	1,5
tree10ok.asc	11	8,9	7,02	2,63	1,88	42,87	47,9	13,3705	3,83	6,09	1,5
treellok.asc	10	9,3	7,29	2,93	2,01	35,42	40,1	10,5385	3,96	0,04	1,5
tree12ok.asc	10	8,6	6,52	2,72	2,08	38,41	41,57	12,2813	4,03	0,03	1,5
tree13ok.asc	11	9,2	6,66	2,95	2,54	38,62	39,44	10,3009	5,09	0,04	1,5
tree14ok.asc	9	8,4	6,26	2,72	2,14	27,13	28,75	10,0801	3,79	0,03	1,5
tree15ok.asc	11	9,4	7,34	2,55	2,06	35,17	36,58	9,5915	3,41	0,04	1,5
tree16ok.asc	11	8,7	6,43	2,98	2,27	32,25	34,97	10,6718	4,82	11,32	1,5
tree17ok.asc	10	8,6	6,52	2,45	2,08	38,25	39,68	10,8273	3,43	0,03	1,5
tree18ok.asc	10	8,2	5,76	2,88	2,44	25,8	26,77	8,1760	4,39	0,03	1,5
tree19ok.asc	11	9,4	7,32	2,85	2,08	40,29	44,04	12,3623	3,73	0,04	1,5

Tabella 17 - LIFE+ InBioWood, Area Gazzo Veronese "B", pioppo 'I-214' di 1,5 anni.

località	età polloni	ID Ceppaia	Diametro ceppaia su fila (cm)	Diametro ceppaia orto fila (cm)	Diametro chioma su fila (m)	Diametro chioma orto fila (m)	Area di insidenza (m²)	Polloni (n.)	H ceppaia (m)	H chioma (m)	H tot (m)
Roncanova	3,5	1	75	65	3,3	4,1	10,8	3	0,61	8,4	9,01
Roncanova	3,5	2	21	18	2	3,7	6,4	3	0,43	8,6	9,03
Roncanova	3,5	3	47	68	2,6	2,3	4,7	2	0,38	9,4	9,78
Villimpenta	5,5	1	120	112	5,3	9,8	44,8	6	0,93	13,8	14,73
Villimpenta	5,5	2	54	57	2,3	8,7	23,8	6	1,01	14,3	15,31
Villimpenta	5,5	3	71	63	2,6	9,1	26,9	5	0,76	15,6	16,36
Villimpenta	5,5	4	43	38	2,8	9,9	31,7	4	0,67	13,1	13,77
Villimpenta	5,5	5	92	73	2,1	9,3	25,5	6	0,58	14,7	15,28
Villimpenta	5,5	6	74	72	1,9	8,8	22,5	6	0,61	13	13,61
Villimpenta	5,5	7	123	51	2,6	9,3	27,8	9	0,71	13,54	14,25
Villimpenta	5,5	8	177	102	2,3	9,2	26,0	8	0,74	14,3	15,04
Cerea	4,5	1	112	90	3,5	9,4	32,7	12	0,53	11	11,53
Cerea	4,5	2	46	38	5,1	6,6	26,9	4	0,76	11,2	11,96
Cerea	4,5	3	64	31	4,3	7,6	27,8	3	0,64	12,3	12,94
Cerea	4,5	4	42	83	3,9	8,8	31,7	5	0,62	11,9	12,52
Cerea	4,5	5	77	68	3,2	6,5	18,5	5	1,02	12,1	13,12
Cerea	4,5	6	98	90	4,2	7,5	26,9	7	1,04	10,3	11,34
Cerea	4,5	7	34	31	4,3	5,4	18,5	3	1,08	13,4	14,48
Cerea	4,5	8	22	26	2,1	3,8	6,8	3	0,74	10,7	11,44
Cerea	4,5	9	79	105	2,4	6,6	15,9	10	0,52	8,9	9,42

Tabella 18 - Area Gazzo Veronese "C", platano di 4 (5) anni.

sito	Treeld	DBH	Htot	Hchioma	Hramo	Hfoglia verde	CrownVol (m³) Hramo	CrownVol (m³) Hfoglia	Crown AreaMax	H Crown AreaMax	vol cil (m³)	età
VillaBartolomea_ blocco1	0_pioppo_001.asc	23	15	11,33	3,15	3,67	134,54	132,83	20,36	7,5	0,31	5,5
VillaBartolomea_ blocco1	0_pioppo_002.asc	25	16,8	12,46	3,5	4,34	161,69	161,05	19,58	9,7	0,41	5,5
VillaBartolomea_ blocco1	0_pioppo_003.asc	25	17,4	12,78	4,27	4,62	146,87	146,56	17,86	9,2	0,43	5,5
VillaBartolomea_ blocco1	0_pioppo_004.asc	25	17,6	13,70	3,58	3,9	163,08	162,88	21,03	8,5	0,43	5,5
VillaBartolomea_ blocco1	0_pioppo_005.asc	24	17,5	13,61	3,38	3,89	147,41	146,99	19,81	9,5	0,40	5,5
VillaBartolomea_ blocco1	0_pioppo_006.asc	23	16,5	13,79	1,94	2,71	116,79	116,03	14,84	7,5	0,34	5,5
VillaBartolomea_ blocco1	0_pioppo_007.asc	27	18,3	13,66	4,25	4,64	223,25	222,2	26,20	11,3	0,52	5,5
VillaBartolomea_ blocco1	0_pioppo_008.asc	25	17,4	12,90	4,01	4,5	190,4	188,44	22,57	10,2	0,43	5,5
VillaBartolomea_ blocco1	0_pioppo_009.asc	24	17,3	13,31	3,87	3,99	131,09	131,25	19,74	11,8	0,39	5,5
VillaBartolomea_ blocco2	0_pioppo_001.asc	26	16,2	12,20	3,43	4	173,95	172,91	23,24	8,7	0,43	5,5
VillaBartolomea_ blocco2	0_pioppo_002.asc	25	16,1	12,64	3,88	3,46	154,75	155,09	20,68	8,4	0,40	5,5
VillaBartolomea_ blocco2	0_pioppo_003.asc	25	16,6	12,31	4,28	4,29	162,43	162,64	23,60	8,3	0,41	5,5
VillaBartolomea_ blocco2	0_pioppo_004.asc	26	16,8	12,66	4,26	4,14	185,65	185,01	22,35	9,4	0,45	5,5
VillaBartolomea_ blocco2	0_pioppo_005.asc	25	16,7	12,15	4,45	4,55	163,39	163,29	22,12	11,8	0,41	5,5
VillaBartolomea_ blocco2	0_pioppo_006.asc	28	17,6	12,66	4,75	4,94	245,17	245,79	30,46	9,4	0,54	5,5
VillaBartolomea_ blocco2	0_pioppo_007.asc	26	17,3	12,77	4,39	4,53	203,03	204,48	24,67	9,9	0,46	5,5
VillaBartolomea_ blocco2	0_pioppo_008.asc	27	17,8	13,82	2,89	3,98	205,94	204,03	22,96	11,7	0,51	5,5
VillaBartolomea_ blocco2	0_pioppo_009.asc	31	19	14,35	4,63	4,65	273,55	271,94	26,68	13,2	0,72	5,5

Tabella 19 - Impianto sperimentale AALSEA, Area Villa Bartolomea, pioppo 'I-214' di 5,5 anni.

dbh medio filare 1 (est)	8	7	8	8	6	9	10	9	8	7	10	8	9	9	7	11	6	7
Hmean filare 1	10,04	8,48	8,62	9,39	10,02	8,58	11,97	11,07	10,29	10,27	10,39	9,03	10,81	10,73	10,77	11,14	8,83	10,31
Hmax filare 1	11,97																	

Tabella 20 - Impianto sperimentale AALSEA, Area Villa Bartolomea, platano di 5,5 anni in filare doppio con andamento nord-sud. Dati relativi al filare con esposizione est.

dbh medio filare 2 (ovest)	12		14	12	16	11	13	10	12	12	11	8	7	12	12	11	13	11	12
Hmean filare 2	10,82		8,85	10,79	11,97	10,42	8,83	10,39	11,05	11,18	12,25	12	9,13	11,63	10,01	10,87	11,18	11,66	11,68
Hmax filare 2	12,25	Ì																	

Tabella 21 - Impianto sperimentale AALSEA, Area Villa Bartolomea, platano di 5,5 anni in filare doppio con andamento nord-sud. Dati relativi al filare con esposizione ovest.

Tesi	Treeld	DBH (cm)	Htot (m)	Hchioma (m)	Hramo (m)	H foglia verde (m)	Crown Vol Hramo (m³)	Crown Vol Hfoglia (m³)	Crown Area Max (m²)	H Crown Area Max (m)	vol cil (m³)	età
Viadana_a_400	1	38,5	28,5	19,99	7,26	8,51	476,34	476,88	48,4	23,7	0,870	9,5
Viadana_a_400	2	38	28,4	20,19	7,55	8,21	649,19	649,33	76,1	19,4	0,873	9,5
Viadana_a_400	3	36	28,8	20,45	7,31	8,35	664,49	659,38	68,6	20,0	1,050	9,5
Viadana_a_400	4	35	28,9	21,49	7,07	7,41	487,42	479,92	58,5	21,8	0,987	9,5
Viadana_a_400	5	35	28,6	19,67	8,03	8,93	464,89	464,04	52,2	23,1	0,886	9,5
Viadana_a_400	6	39,5	29,1	20,4	7,72	8,7	541,72	535,39	74,1	19,9	0,857	9,5
Viadana_a_400	7	38,5	29	21,64	7,68	7,36	612,07	604,46	73,0	24,1	1,017	9,5
Viadana_a_400	8	36,5	28,9	21,11	7,62	7,79	655,02	657,08	65,3	25,8	1,120	9,5
Viadana_a_400	9	39,5	28,4	21,53	7	6,87	444	437,45	59,6	15,6	0,913	9,5
Viadana_a_400	10	38,5	28,9	20,92	7,16	7,98	559,47	562,48	65,5	19,8	1,054	9,5
Viadana_a_400	11	35,5	27,6	19,92	7,6	7,68	461,97	453,53	58,7	16,5	1,067	9,5
Viadana_a_400	12	36,5	28,4	19,97	8,46	8,43	560,44	559,91	61,2	18,3	0,828	9,5

Tabella 22 - Impianto sperimentale AALSEA, Area "Viadana a" 400 (Panguaneta), Pioppo 'I-214' di 9,5 anni in filare. Le piante sono poste a 4 m di distanza lungo il filare ed hanno complessivamente 54 m² di superficie produttiva lorda a disposizione (4 x 13,5 m).

Tesi	Treeld	DBH (cm)	H tot (m)	H chioma (m)	H ramo (m)	H foglia verde (m)	Crown Vol H ramo (m³)	Crown Vol H foglia (m³)	Crown Area Max (m²)	H Crow n Area Max (m)	vol cil (m³)	età
Viadana_a_450	1	37	28,9	21,1	7,03	7,8	675,71	683,47	76,5	20,0	0,929	9,5
Viadana_a_450	2	36,5	28,2	20,48	6,86	7,72	710,82	697,71	69,6	17,3	0,973	9,5
Viadana_a_450	3	41	27,9	19,87	7,3	8,03	770,05	775,14	73,2	21,3	0,929	9,5
Viadana_a_450	4	43,5	28,3	20,46	7,64	7,84	385,6	386,08	54,2	22,0	0,876	9,5
Viadana_a_450	5	36,5	29,11	22,49	7,08	6,62	1018,77	1016,53	90,6	24,6	1,112	9,5
Viadana_a_450	6	38	30,14	21,47	7,94	8,67	810,64	810,51	71,9	23,7	1,450	9,5
Viadana_a_450	7	40,5	29,1	21,64	7,07	7,46	831,3	830,71	126,4	20,2	1,243	9,5
Viadana_a_450	8	41,5	29,3	21,74	8,07	7,56	936,74	932,49	90,5	20,7	1,230	9,5
Viadana_a_450	9	41,5	29,6	20,86	7,63	8,74	854,25	852,22	72,8	23,0	1,184	9,5
Viadana_a_450	10	42,5	29,2	22,2	6,87	7	883,76	872,99	88,9	23,4	1,112	9,5
Viadana_a_450	11	37	26,8	19,3	7,61	7,5	605,46	600,22	77,6	20,4	0,963	9,5
Viadana_a_450	12	38,5	28,2	19,34	8,15	8,86	605,52	605,73	58,8	23,3	0,873	9,5

Tabella 23 - Impianto sperimentale AALSEA, Area "Viadana a" 450 (Panguaneta), Pioppo 'I-214' di 9,5 anni in filare. Le piante sono poste a 4,5 m di distanza lungo il filare ed hanno complessivamente 60,7 m² di superficie produttiva lorda a disposizione (4,5 x 13,5 m).

Tesi	Treeld	DBH (cm)	H tot (m)	H chioma (m)	H ramo (m)	H foglia verde (m)	Crown Vol H ramo (m³)	Crown Vol H foglia (m³)	Crown Area Max (m²)	H Crow n Area Max (m)	vol cil (m³)	età
Viadana_a_500	1	38	28,7	19,84	8,65	8,86	600,75	604,34	64,5	21,2	0,929	9,5
Viadana_a_500	2	40	28,8	19,89	8,55	8,91	582,19	582,12	68,6	23,2	1,043	9,5
Viadana_a_500	3	38	28,3	21,12	7,2	7,18	726,07	724,77	82,6	21,7	0,966	9,5
Viadana_a_500	4	44	28,2	19,62	9,35	8,58	635,82	633,74	74,5	12,9	1,121	9,5
Viadana_a_500	5	40,5	29,1	22,36	5,11	6,74	751,68	750,51	84,6	20,8	1,007	9,5
Viadana_a_500	6	38,5	29,5	23,34	6,54	6,16	1215,67	1234,62	118,5	24,9	1,368	9,5
Viadana_a_500	7	38,5	29,4	22,12	7,44	7,28	832,67	831,93	103,0	24,1	1,188	9,5
Viadana_a_500	8	44	29,2	20,72	7,77	8,48	819,07	814,69	91,4	19,2	1,368	9,5
Viadana_a_500	9	44	29,1	21,43	7,8	7,67	1014,39	1010,99	88,0	19,3	1,516	9,5
Viadana_a_500	10	40,5	29,1	21,62	7,17	7,48	837,88	838,62	90,1	21,2	1,112	9,5
Viadana_a_500	11	36,5	28,7	21,02	6,99	7,68	743,68	743,2	87,0	18,9	1,032	9,5
Viadana_a_500	12	39	28,6	21,47	7,24	7,13	794,59	790,32	78,0	22,1	1,141	9,5

Tabella 24 - Impianto sperimentale AALSEA, Area "Viadana a" 500 (Panguaneta), Pioppo 'I-214' di 9,5 anni in filare. Le piante sono poste a 5 m di distanza lungo il filare ed hanno complessivamente 67,5 m² di superficie produttiva lorda a disposizione (5 x 13,5 m).

Treeld	DBH	Htot	Hchioma	Hramo	Hfoglia- verde	CrownVol (m³)Hramo	CrownVol (m³) Hfoglia	CrownArea Max	H Crown AreaMax	vol cil (m³)	età
viadana_b1 tree01	35	20	14,55	7,00	5,45	446,03	470,66	53,68	8,90	0,96	6,5
viadana_b1 tree02	33	19,8	13,95	6,48	5,85	354,84	355,74	46,97895532	12,6	0,85	6,5
viadana_b1 tree03	35	19,9	14,23	6,84	5,67	386,86	395,09	44,24848769	15,42	0,96	6,5
viadana_b1 tree04	34	21	15,22	6,54	5,78	379,1	388,11	38,86414337	11,63	0,95	6,5
viadana_b1 tree05	36	20,2	15,11	6,22	5,09	396,33	414,01	43,29444282	10,04	1,03	6,5
viadana_b1 tree06	32	20,2	14,43	6,49	5,77	347,94	354,26	39,59241526	13,72	0,81	6,5
viadana_b1 tree07	35	20,7	14,81	6,25	5,89	410,44	411,87	49,71833204	9,34	1,00	6,5
viadana_b1 tree08	31	20,4	14,34	6,48	6,06	351,27	358,13	39,13712354	11,31	0,77	6,5
viadana_b1 tree09	33	21,4	15,79	6,36	5,61	385,22	394,68	42,04021436	9,96	0,92	6,5
viadana_b1 tree10	31	20,6	15,04	6,49	5,56	371,42	375,37	37,89659911	14,71	0,78	6,5
viadana_b2 tree01	36	19,2	15,02	6,04	4,18	484,88	497,8	55,63532583	10,33	0,98	6,5
viadana_b2 tree02	34	20,2	15,09	6,36	5,11	394,55	407,5	36,84037912	9,16	0,92	6,5
viadana_b2 tree03	33	20,4	15,17	7,18	5,23	339,77	361,39	37,14129768	15,58	0,87	6,5
viadana_b2 tree04	34	20,4	14,69	6,73	5,71	405,24	413,58	41,13996438	12,46	0,93	6,5
viadana_b2 tree05	32	20,6	15,28	6,18	5,32	353,02	359,25	34,71444767	11,17	0,83	6,5
viadana_b2 tree06	32	20,7	15,95	5,71	4,75	355,03	362,03	36,14024599	13,9	0,83	6,5
viadana_b2 tree07	32	20,4	14,66	6,41	5,74	342,27	352,84	34,77967238	10,69	0,82	6,5
viadana_b2 tree08	32	20,4	14,56	6,43	5,84	337,45	337,45	35,64678855	11,39	0,82	6,5
viadana_b2 tree09	32	20,2	14,33	7,11	5,87	359,23	369,04	45,56267694	9,62	0,81	6,5

Tabella 25 - Impianto sperimentale AALSEA, Area Viadana B, pioppo 'I-214' di 6,5 anni con 110 m² di superficie lorda a disposizione.

Treeld	DBH	Htot	Hchioma	Hramo	Hfoglia- verde	CrownVol (m³)Hramo	CrownVol (m³) Hfoglia	CrownArea Max	H Crown AreaMax	vol cil (m³)	età
viadana_c4 tree01.asc	16	12,5	9,61	2,78	2,89	77,22	78,13	14,30	6,8	0,126	3,5
viadana_c4 tree02.asc	15	13,6	9,46	4,20	4,14	58,48	59,30	12,17	6,4	0,120	3,5
viadana_c4 tree03.asc	17	13,4	9,59	3,52	3,81	92,49	92,44	17,67	5,8	0,152	3,5
viadana_c4 tree04.asc	13	12,7	9,67	3,73	3,03	58,59	61,00	12,25	6,2	0,084	3,5
viadana_c4 tree05.asc	15	13,9	10,74	3,16	3,16	69,87	69,87	11,18	6,3	0,123	3,5
viadana_c4 tree06.asc	17	14,5	11,62	2,43	2,88	92,70	92,07	15,14	9,2	0,165	3,5
viadana_c4 tree07.asc	16	12,6	9,90	2,44	2,70	81,27	81,24	13,11	5,3	0,127	3,5
viadana_c4 tree08.asc	18	15,1	12,22	2,72	2,88	99,75	98,77	18,26	10,7	0,192	3,5
viadana_c4 tree09.asc	16	13,9	10,62	2,92	3,28	67,50	67,91	12,54	6,1	0,140	3,5
viadana_c4 tree10.asc	18	14,5	12,48	1,77	2,02	102,21	102,19	16,70	7,3	0,184	3,5
viadana_c4 tree11.asc	19	14,7	11,80	2,10	2,90	91,78	91,58	12,72	5,0	0,208	3,5
viadana_c4 tree12.asc	18	14,8	11,69	2,81	3,11	91,79	90,53	12,98	5,1	0,188	3,5
viadana_c4 tree13.asc	16	13	10,15	2,83	2,85	79,62	79,68	14,55	7,2	0,131	3,5
viadana_c4 tree14.asc	15	13,1	10,91	1,88	2,19	59,18	59,31	12,26	6,5	0,116	3,5
viadana_c4 tree15.asc	18	14,4	11,07	3,10	3,33	103,43	103,41	15,73	7,5	0,183	3,5
viadana_c4 tree16.asc	15	12,8	9,89	2,82	2,91	67,11	67,48	11,58	6,0	0,113	3,5
viadana_c4 tree17.asc	15	12,7	9,83	2,77	2,87	63,50	63,39	11,22	6,2	0,112	3,5
viadana_c4 tree18.asc	17	13,2	11,16	2,00	2,04	84,34	84,38	15,77	7,0	0,150	3,5
viadana_c4 tree19.asc	15	12,5	9,02	3,36	3,48	61,26	62,05	13,52	5,6	0,110	3,5
viadana_c4 tree20.asc	16	12,9	9,33	3,15	3,57	74,52	74,69	16,08	6,6	0,130	3,5
viadana_c4 tree21.asc	15	13	10,91	1,82	2,09	68,52	68,70	12,15	7,4	0,115	3,5

Tabella 26 - Area Viadana C, pioppo 'I-214' di 3,5 anni con 42 m² di superficie lorda a disposizione, coltivazione tradizionale agronomica.

Treeld	DBH	Htot	Hchioma	Hramo	Hfoglia- verde	CrownVol (m³)Hramo	CrownVol (m³) Hfoglia	CrownArea Max	H Crown AreaMax	vol cil (m³)	età
viadana_c6 tree01_ok.asc	32	21,6	17,00	5,25	4,60	343,01	343,56	39,52	15,0	0,869	6,5
viadana_c6 tree02_ok.asc	31	21,4	15,70	6,57	5,70	279,11	281,48	32,88	15,2	0,808	6,5
viadana_c6 tree03_ok.asc	27	20	15,22	5,75	4,78	235,38	239,21	27,27	14,2	0,573	6,5
viadana_c6 tree04_ok.asc	28	21,1	15,05	5,72	6,05	254,50	255,72	32,47	15,8	0,650	6,5
viadana_c6 tree05_ok.asc	30	21,7	16,12	6,77	5,58	282,58	287,45	34,22	14,4	0,767	6,5
viadana_c6 tree06_ok.asc	31	21,9	16,72	5,56	5,18	312,68	312,48	34,41	15,5	0,826	6,5
viadana_c6 tree07_ok.asc	30	22	17,22	5,25	4,78	295,40	297,09	35,04	16,0	0,778	6,5
viadana_c6 tree08_ok.asc	29	21,5	16,34	5,27	5,16	249,04	249,37	29,44	14,9	0,710	6,5
viadana_c6 tree09_ok.asc	29	21,9	15,11	7,08	6,79	249,09	249,06	29,48	18,3	0,723	6,5
viadana_c6 tree10_ok.asc	29	22,2	16,25	6,21	5,95	285,94	286,44	30,79	16,0	0,733	6,5
viadana_c6 tree11_ok_np.asc	28	21,8	16,05	6,44	5,75	292,88	296,30	37,89	15,5	0,671	6,5
viadana_c6 tree12_ok_np.asc	28	21,9	16,32	6,47	5,58	293,22	295,89	34,96	13,8	0,674	6,5
viadana_c6 tree13_ok.asc	27	20,3	15,43	5,37	4,87	244,39	245,50	27,74	13,4	0,581	6,5
viadana_c6 tree14_ok_np.asc	31	21,7	15,86	6,70	5,84	290,48	297,30	29,90	18,0	0,819	6,5
viadana_c6 tree15_ok_np.asc	31	21,7	15,81	6,68	5,89	291,82	298,54	29,68	18,0	0,819	6,5
viadana_c6 tree16_ok_np.asc	22	15	10,63	5,34	4,37	141,42	145,34	24,34	7,5	0,285	6,5
viadana_c6 tree17_ok.asc	31	22,1	15,06	7,35	7,04	267,67	270,33	32,33	16,8	0,834	6,5
viadana_c6 tree18_ok.asc	29	21,5	15,05	6,84	6,45	243,08	244,03	33,52	15,0	0,710	6,5
viadana_c6 tree19_ok.asc	30	22,3	17,33	5,03	4,97	271,95	270,37	35,02	17,4	0,788	6,5
viadana_c6 tree20_ok.asc	29	22,3	15,85	7,00	6,45	268,13	271,48	30,18	15,3	0,736	6,5
viadana_c6 tree21_ok_np.asc	29	21,7	16,80	5,21	4,90	299,90	298,92	32,42	14,4	0,717	6,5

Tabella 27 - Area Viadana C, pioppo '1-214' di 6,5 anni con 42 m² di superficie lorda a disposizione, coltivazione tradizionale agronomica.

Treeld	DBH	Htot	Hchioma	Hramo	Hfoglia- verde	CrownVol (m³)Hramo	CrownVol (m³) Hfoglia	CrownArea Max	H Crown AreaMax	vol cil (m³)	età
viadana_c8 tree01_ok_np.asc	30	23,3	17,98	4,49	5,32	269,62	268,05	28,68	17,5	0,823	7,5
viadana_c8 tree02_ok.asc	31	23,4	18,45	4,43	4,95	337,16	335,76	33,04	14,8	0,883	7,5
viadana_c8 tree03_ok.asc	32	23,6	16,62	5,57	6,98	408,58	398,13	41,54	16,8	0,949	7,5
viadana_c8 tree04_ok.asc	31	23,5	16,52	5,73	6,98	338,79	335,17	37,51	14,3	0,887	7,5
viadana_c8 tree05_ok.asc	31	23,3	15,48	5,97	7,82	306,97	304,26	32,08	14,8	0,879	7,5
viadana_c8 tree06_ok_np.asc	31	23,7	18,63	4,08	5,07	334,23	329,58	31,33	17,1	0,894	7,5
viadana_c8 tree07_ok.asc	27	22,8	18,18	4,38	4,62	208,38	208,34	20,42	16,8	0,653	7,5
viadana_c8 tree08_ok_np.asc	34	24,2	18,54	4,92	5,66	422,00	420,19	38,67	18,9	1,099	7,5
viadana_c8 tree09_ok_np.asc	36	24,3	17,01	5,40	7,29	441,96	433,78	44,14	18,2	1,237	7,5
viadana_c8 tree10_ok.asc	28	22,7	17,10	4,89	5,60	201,79	201,73	20,87	16,7	0,699	7,5
viadana_c8 tree11_ok.asc	25	23,1	16,87	5,16	6,23	159,75	157,50	17,88	15,2	0,567	7,5
viadana_c8 tree12_ok.asc	25	21,9	15,49	4,86	6,41	150,10	144,33	16,37	10,4	0,538	7,5
viadana_c8 tree13_ok.asc	32	23,4	17,12	5,53	6,28	354,39	352,69	38,55	17,1	0,941	7,5
viadana_c8 tree14_ok.asc	30	23,6	17,57	5,43	6,03	273,38	272,15	27,73	15,5	0,834	7,5
viadana_c8 tree15_ok.asc	33	24,2	16,50	6,58	7,70	343,36	341,87	38,82	13,0	1,035	7,5
viadana_c8 tree16_ok.asc	30	23,7	18,38	4,12	5,32	266,74	260,17	29,22	16,0	0,838	7,5
viadana_c8 tree18_ok.asc	30	23,5	17,43	5,50	6,07	298,08	296,45	30,61	15,0	0,831	7,5
viadana_c8 tree19_ok.asc	29	24,1	18,42	4,49	5,68	251,45	243,91	28,56	17,2	0,796	7,5
viadana_c8 tree20_ok.asc	31	24,1	17,82	5,57	6,28	302,99	302,49	29,52	15,3	0,909	7,5
viadana_c8 tree21_ok.asc	31	23,5	16,61	6,47	6,89	283,40	281,24	32,07	14,1	0,887	7,5

Tabella 28 - Area Viadana C, pioppo '1-214' di 7,5 anni con 42 m² di superficie lorda a disposizione, coltivazione tradizionale agronomica.

Treeld	DBH	Htot	Hchioma	Hramo	Hfoglia- verde	CrownVol (m³)Hramo	CrownVol (m³) Hfoglia	CrownArea Max	H Crown AreaMax	vol cil (m³)	età
viadana_c9 tree01_ok.asc	30	24,6	18,36	5,51	6,24	377,59	374,85	36,14	16,8	0,869	8,5
viadana_c9 tree02_ok.asc	32	25,3	20,60	4,97	4,70	357,08	358,85	28,35	17,5	1,017	8,5
viadana_c9 tree03_ok.asc	37	26,2	20,59	5,43	5,61	546,35	544,58	44,13	20,9	1,409	8,5
viadana_c9 tree04_ok.asc	31	24,4	19,38	5,43	5,02	278,56	277,38	24,10	16,6	0,921	8,5
viadana_c9 tree05_ok.asc	27	23,5	17,39	5,29	6,11	195,14	194,65	21,48	16,5	0,673	8,5
viadana_c9 tree06_ok.asc	39	24,9	19,02	5,56	5,88	496,96	489,78	41,65	18,9	1,487	8,5
viadana_c9 tree07_ok.asc	34	25,7	20,38	5,24	5,32	496,14	496,46	41,10	20,4	1,167	8,5
viadana_c9 tree08_ok.asc	30	24,8	16,74	6,03	8,06	277,14	273,48	27,37	19,4	0,877	8,5
viadana_c9 tree09_ok.asc	32	25,6	20,82	4,82	4,78	301,69	302,46	24,75	13,0	1,029	8,5
viadana_c9 tree10_ok.asc	29	25,3	19,30	5,63	6,00	269,78	268,82	23,28	15,7	0,836	8,5
viadana_c9 tree11_ok.asc	33	25,2	19,47	5,41	5,73	394,72	391,74	33,16	14,9	1,078	8,5
viadana_c9 tree12_ok.asc	34	25,8	21,18	5,09	4,62	438,93	438,37	35,61	20,1	1,171	8,5
viadana_c9 tree13_ok.asc	30	24,2	18,41	5,58	5,79	314,56	313,51	30,82	18,9	0,855	8,5
viadana_c9 tree14_ok_np.asc	31	25,1	18,74	5,26	6,36	283,77	277,22	24,68	20,7	0,947	8,5
viadana_c9 tree15_ok.asc	35	25,6	20,12	5,33	5,48	481,07	479,97	37,94	16,3	1,232	8,5
viadana_c9 tree16_ok.asc	29	24,9	19,11	5,17	5,79	327,15	325,29	31,62	14,6	0,822	8,5
viadana_c9 tree17_ok.asc	30	25,3	19,07	5,20	6,23	329,80	326,06	32,51	16,2	0,894	8,5
viadana_c9 tree18_ok.asc	33	25,2	20,65	4,53	4,55	370,66	371,48	35,19	18,2	1,078	8,5
viadana_c9 tree19_ok.asc	27	24,9	20,65	4,36	4,25	192,29	192,01	18,88	15,2	0,713	8,5
viadana_c9 tree20_ok.asc	32	25,5	21,14	5,43	4,36	345,97	345,81	29,56	18,6	1,025	8,5
viadana_c9 tree21_ok.asc	28	24,9	19,93	4,62	4,97	225,95	224,01	20,73	13,2	0,767	8,5

Tabella 29 - Area Viadana C, pioppo '1-214' di 8,5 anni con 42 m² di superficie lorda a disposizione, coltivazione tradizionale agronomica.

Treeld	DBH	Htot	Hchioma	Hramo	Hfoglia- verde	CrownVol (m³)Hramo	CrownVol (m³) Hfoglia	CrownArea Max	H Crown AreaMax	vol cil (m³)	età
viadana_c10 tree01_ok.asc	29	24,1	17,15	6,68	6,95	256,64	255,52	31,57	15,2	0,796	9,5
viadana_c10 tree02_ok.asc	18	19,3	14,69	4,75	4,61	94,86	94,02	13,31	13,2	0,246	9,5
viadana_c10 tree03_ok.asc	35	24,3	14,45	8,01	9,85	425,09	406,81	42,01	19,6	1,169	9,5
viadana_c10 tree04_ok.asc	16	16,9	11,62	4,89	5,28	104,09	103,19	18,02	11,0	0,170	9,5
viadana_c10 tree05_ok.asc	33	25,1	14,82	8,40	10,28	272,53	268,12	30,50	19,7	1,073	9,5
viadana_c10 tree06_ok.asc	35	24,6	14,25	8,78	10,35	411,59	394,88	43,20	18,8	1,183	9,5
viadana_c10 tree07_ok.asc	32	25,3	19,43	5,74	5,87	237,03	236,94	26,91	19,1	1,017	9,5
viadana_c10 tree08_ok.asc	34	25,4	16,21	7,27	9,19	434,91	421,22	43,87	17,0	1,153	9,5
viadana_c10 tree09_ok.asc	35	25	17,94	5,26	7,06	615,82	610,24	52,09	12,6	1,203	9,5
viadana_c10 tree10_ok.asc	33	24,9	20,02	5,04	4,88	438,21	437,18	35,31	19,1	1,065	9,5
viadana_c10 tree11_ok.asc	29	24,9	19,20	4,68	5,70	301,34	296,51	22,04	13,8	0,822	9,5
viadana_c10 tree12_ok.asc	31	24,4	19,21	4,94	5,19	305,11	304,76	29,18	17,4	0,921	9,5
viadana_c10 tree13_ok.asc	34	24,9	18,85	5,24	6,05	476,83	470,73	42,38	18,3	1,130	9,5
viadana_c10 tree14_ok.asc	34	25,5	20,54	6,29	4,96	497,88	501,92	39,62	18,3	1,158	9,5
viadana_c10 tree15_ok.asc	33	25,2	19,19	5,33	6,01	403,24	401,16	34,49	15,7	1,078	9,5
viadana_c10 tree16_ok.asc	32	24,8	19,40	4,32	5,40	344,60	338,68	29,93	20,4	0,997	9,5
viadana_c10 tree17_ok.asc	33	24,5	19,18	4,87	5,32	415,32	411,85	41,48	15,8	1,048	9,5
viadana_c10 tree19_ok.asc	35	24,9	18,13	5,47	6,77	496,96	491,42	42,26	15,2	1,198	9,5
viadana_c10 tree20_ok.asc	30	24,8	19,50	4,53	5,30	322,66	318,72	26,61	19,4	0,877	9,5
viadana_c10 tree21_ok.asc	31	25,2	17,89	5,31	7,31	402,85	392,97	35,30	16,0	0,951	9,5

Tabella 30 - Area Viadana C, pioppo 'I-214' di 9,5 anni con 42 m² di superficie lorda a disposizione, coltivazione tradizionale agronomica.

REPORT SULL'ANDAMENTO DELL'ACCRESCIMENTO NELLE PIANTAGIONI 3P

Rilievi con sistemi tradizionali

Associazione per un Arboricoltura da legno Sostenibile per l'Economia e l'Ambiente (AALSEA) e Compagnia delle Foreste Per le piante principali a ciclo brevissimo (CBB) e per quelle a ciclo medio-lungo (CML) collocate all'interno delle piantagioni LIFE+ InBioWood sono stati effettuati rilievi direttamente dai partner AALSEA e Compagnia delle Foreste con metodi e strumentazioni tradizionali (calibro, fettuccia metrica, stadia graduata). Le motivazioni di tale scelta si possono riassumere nei seguenti punti:

- si è deciso di utilizzare le piante di platano quali indicatori dello sviluppo del CBB. Tale scelta è stata dettata dal fatto che il platano è specie tradizionalmente utilizzata in Veneto per la produzione di legna da ardere ed è stata anche quella più impiegata nelle piantagioni LIFE+ InBioWood per quanto riguarda il CBB. La giovane età delle piantine (3,5 anni quelle più vecchie), le conseguenti modeste dimensioni diametriche e la ramosità, oltreché la densità fogliare, in grado di schermare la luce laser degli strumenti, avrebbero impedito di ottenere un dato attendibile con il sistema LiDAR. Per avere dati affidabili lo strumento sarebbe dovuto essere così vicino ad ogni soggetto da costringere ad una rilevazione individuale per ogni soggetto; costosissima e di complessa armonizzazione in fase di elaborazione dei dati;
- per il CML si è scelto di misurare le piante di farnia, specie tipica della pianura padano-veneta. La scelta è ricaduta su tale specie poiché, tra quelle a CML, è di gran lunga la più impiegata in tutte le piantagioni 3P del LIFE+ InBioWood. Per la farnia, tra le caratteristiche che hanno reso necessario un rilievo con sistemi manuali, oltre alla giovane età si sono aggiunte anche le modeste dimensioni che tale specie a CML raggiunge nei primi 3,5 anni di vita e la presenza di shelter contro il morso della fauna selvatica. Entrambe le caratteristiche avrebbero reso necessario un rilievo individuale con un sensore LiDAR da terra (TLS) che avrebbe causato un costo eccessivo rispetto al budget del progetto. Inoltre, dal momento che le piante di farnia hanno diametri modesti a 130 cm da terra, si è fatto la scelta di utilizzare il parametro dell'altezza per verificare se il ritmo di accrescimento fosse paragonabile a quello di piantagioni policicliche sperimentali (AALSEA) più adulte situate in Pianura Padana.

Risultati dei rilievi

Circonferenza (cm)	Diametro a 130 cm da terra (cm)	Raggio chioma nord (cm)	Raggio chioma ovest (cm)	Raggio chioma sud (cm)	Raggio chioma est (cm)	Raggio medio (cm)	Area insidenza (m²)
12,00	3,8	105	135	70	105	103,75	3,39
6,50	2,1	50	85	30	75	60,00	1,13
9,00	2,9	65	105	70	75	78,75	1,95
7,00	2,2	65	85	50	25	56,25	1,00
10,00	3,2	65	105	70	125	91,25	2,62
8,50	2,7	65	65	100	85	78,75	1,95
12,00	3,8	115	105	40	105	91,25	2,62
17,00	5,4	135	170	160	160	156,25	7,69
19,00	6,0	115	185	150	225	168,75	8,97
10,00	3,2	35	155	50	185	106,25	3,56
12,00	3,8	35	145	110	135	106,25	3,56
10,00	3,2	35	135	60	135	91,25	2,62
16,50	5,3	125	145	100	175	136,25	5,85
7,00	2,2	25	95	20	105	61,25	1,18
12,00	3,8	60	165	110	120	113,75	4,08
12,00	3,8	55	145	90	135	106,25	3,56
5,00	1,6	25	65	30	35	38,75	0,47
18,00	5,7	145	155	130	155	146,25	6,74
10,00	3,2	55	95	30	125	76,25	1,83
19,00	6,0	105	165	120	185	143,75	6,51
9,00	2,9	55	75	60	105	73,75	1,71
13,00	4,1	45	125	90	155	103,75	3,39
7,00	2,2	45	65	40	125	68,75	1,49

Tabella 31 - segue pagina successiva

Circonferenza (cm)	Diametro a 130 cm da terra (cm)	Raggio chioma nord (cm)	Raggio chioma ovest (cm)	Raggio chioma sud (cm)	Raggio chioma est (cm)	Raggio medio (cm)	Area insidenza (m²)
11,00	3,5	65	115	120	125	106,25	3,56
8,00	2,5	15	65	120	85	71,25	1,60
9,00	2,9	105	75	50	75	76,25	1,83
6,00	1,9	65	75	40	105	71,25	1,60
16,00	5,1	115	185	110	185	148,75	6,97
9,00	2,9	45	145	40	175	101,25	3,23
12,00	3,8	85	115	70	125	98,75	3,07
8,50	2,7	55	115	50	85	76,25	1,83
15,00	4,8	125	185	90	125	131,25	5,43
11,00	3,5	45	125	90	125	96,25	2,92
13,00	4,1	75	95	80	165	103,75	3,39
18,00	5,7	85	190	140	90	126,25	5,02
11,00	3,5	65	105	70	75	78,75	1,95
7,00	2,2	70	80	60	40	62,50	1,23
9,00	2,9	60	100	90	110	90,00	2,55
8,00	2,5	65	65	100	85	78,75	1,95
11,00	3,5	100	100	60	110	92,50	2,70
19,00	6,0	120	160	110	130	130,00	5,33
18,00	5,7	90	180	140	230	160,00	8,07
11,00	3,5	50	120	70	160	100,00	3,15
14,00	4,5	60	100	130	150	110,00	3,81
10,00	3,2	40	140	50	150	95,00	2,84
18,00	5,7	140	100	110	135	121,25	4,63
8,00	2,5	30	100	40	120	72,50	1,66
14,00	4,5	70	170	110	140	122,50	4,73
15,00	4,8	50	160	110	140	115,00	4,17
9,00	2,9	60	80	40	105	71,25	1,60
8,00	2,5	70	80	60	40	62,50	1,23
8,00	2,5	40	140	50	150	95,00	2,84
17,00	5,4	140	150	110	150	137,50	5,96
7,00	2,2	30	100	40	120	72,50	1,66
11,00	3,5	40	140	50	150	95,00	2,84
18,50	5,9	140	150	110	100	125,00	4,92
16,00	5,1	50	120	70	160	100,00	3,15
16,00	5,1	60	100	130	150	110,00	3,13
11,00	3,5	40	140	50	150	95,00	2,84
16,00	5,1	140	150	110	150	137,50	5,96
12,00	3,8	50	120	70	160	100,00	3,15
14,00	4,5	60	100	130	150	110,00	3,15
11,00	3,5	40	140	50	150	95,00	2,84
19,00	6,0	140	150	110	150	137,50	5,96
7,00	2,2	30	100	40	120	72,50	1,66
8,00	2,2	60	100	90	110	90,00	2,55
8,00		65	65	100	85		
	2,5					78,75	1,95
11,00	3,5	100	100	60	110	92,50	2,70
19,00	6,0	120	130	110	150	127,50	5,12
20,00	6,4	90	180	140	230	160,00	8,07
12,00	3,8 4,1	50 60	120 100	70 130	160 150	100,00	3,15 3,81

Tabella 31 - segue pagina successiva

Circonferenza (cm)	Diametro a 130 cm da terra (cm)	Raggio chioma nord (cm)	Raggio chioma ovest (cm)	Raggio chioma sud (cm)	Raggio chioma est (cm)	Raggio medio (cm)	Area insidenza (m²)
12,00	3,8	40	140	50	150	95,00	2,84
21,00	6,7	140	150	110	150	137,50	5,96
15,00	4,8	60	100	130	150	110,00	3,81
12,00	3,8	40	140	50	150	95,00	2,84
18,00	5,7	140	150	110	150	137,50	5,96
9,00	2,9	30	100	40	120	72,50	1,66
11,00	3,5	100	100	60	110	92,50	2,70
19,50	6,2	120	160	110	120	127,50	5,12
18,50	5,9	90	180	140	230	160,00	8,07
12,00	3,8	50	120	70	160	100,00	3,15
14,00	4,5	60	100	130	150	110,00	3,81
10,00	3,2	40	140	50	150	95,00	2,84
21,00	6,7	140	150	110	150	137,50	5,96
13,00	4,1	60	100	130	150	110,00	3,81
11,00	3,5	40	140	50	150	95,00	2,84
16,60	5,3	140	150	110	150	137,50	5,96
7,50	2,4	30	100	40	120	72,50	1,66
11,00	3,5	40	140	50	150	95,00	2,84
17,50	5,6	140	150	110	150	137,50	5,96
9,00	2,9	30	100	40	120	72,50	1,66
18,00	5,7	70	170	110	140	122,50	4,73
18,00	5,7	50	160	110	140	115,00	4,17
8,50	2,7	60	80	40	105	71,25	1,60
11,50	3,7	40	140	50	150	95,00	2,84
17,00	5,4	140	150	110	150	137,50	5,96
9,00	2,9	30	100	40	120	72,50	1,66
12,00	3,8	40	140	50	150	95,00	2,84
19,00	6,0	140	150	110	100	125,00	4,92

Tabella 31 - Impianti LIFE+ InBioWood, dati relativi alle piante di platano di 3,5 anni a ciclo brevissimo (rilievo agosto 2017), messe a dimora nelle piantagioni a pieno campo in prossimità del fiume Tartaro.

Migliore Altezza (cm)	Peggiore Altezza (cm)
210	140
170	90
115	115
160	160
180	90
140	140
110	110
150	100
160	105
110	95
120	80
140	120
170	130
170	150
190	180
160	140

Migliore Altezza (cm)	Peggiore Altezza (cm)
130	80
150	80
110	95
190	110
160	125
170	140
150	135
190	160
190	150
210	100
230	190
170	130
180	140
150	120
190	160
220	190

Migliore Altezza (cm)	Peggiore Altezza (cm)
160	145
180	160
170	120
190	130
210	180
210	180
220	190
180	140
175	145
200	180
190	125
170	100
180	160
170	160
190	180
190	180

Migliore Altezza (cm)	Peggiore Altezza (cm)
190	190
170	140
210	170
180	130
180	120
190	140
185	155
210	170
180	135
200	120
230	110
190	170
200	185
210	175
160	120
210	170

Tabella 32 - segue pagina successiva

Migliore Altezza (cm)	Peggiore Altezza (cm)
180	150
170	100
210	120
190	160
200	90
190	110
180	170
190	130
230	160

Migliore Altezza (cm)	Peggiore Altezza (cm)
220	140
180	120
170	140
185	145
195	160
210	130
240	210
195	110
170	145

Migliore Altezza (cm)	Peggiore Altezza (cm)
220	185
200	110
200	95
280	190
170	150
190	160
210	135
230	180
180	155

Migliore Altezza (cm)	Peggiore Altezza (cm)	
190	180	
220	190	
160	150	
210	200	
230	190	
190	150	
240	140	
230	170	
210	180	

Tabella 32 - Impianti LIFE+ InBioWood, dati relativi all'altezza raggiunta da 100 copie di piante di farnia dopo 3 stagioni vegetative, in cui si sono distinte nella prima colonna le piante più alte della coppia e nella seconda quelle più basse.

Migliore Altezza (cm)	Peggiore Altezza (cm)
250	200
240	240
210	190
420	200
280	nc
310	180
300	160
230	180
310	300
210	nc
370	260
240	nc
300	220
250	130

Migliore Altezza (cm)	Peggiore Altezza (cm)
170	110
110	110
120	120
330	130
240	220
170	100
270	230
390	240
150	100
195	120
300	170
260	210
250	240
330	150

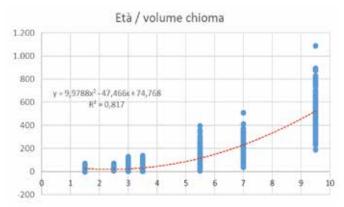
Migliore Altezza (cm)	Peggiore Altezza (cm)
200	170
260	160
140	nc
280	190
310	245
170	150
230	90
200	90
160	150
250	220
250	270
195	180
320	250
220	130

Migliore Altezza (cm)	Peggiore Altezza (cm)
180	140
160	110
270	70
190	140
200	150
350	120
200	110
150	110
220	300
100	80
270	270
130	130
160	150
	•

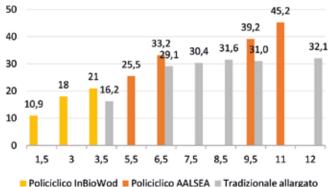
Tabella 33 - Impianto sperimentale AALSEA di Valle dell'Oca (realizzato in primavera 2004). Dati relativi all'altezza raggiunta da 55 copie di piante di farnia dopo 3 stagioni vegetative, in cui si sono distinte nella prima colonna le piante più alte della coppia e nella seconda quelle più basse.

Considerazioni sui rilievi effettuati

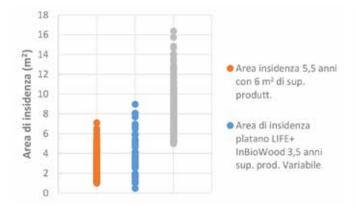
Nell'Azione C1, punto 5, era stabilito di raccogliere dati per verificare il ritmo di accrescimento delle piantagioni LIFE+ InBioWood. I rilievi sono stati effettuati utilizzando due sistemi innovativi non ancora disponibili al momento della stesura del progetto. I due sistemi hanno consentito di misurare alcuni parametri (es. area di insidenza e volume della chioma) con maggior precisione rispetto ai sistemi manuali preconizzati in fase progettuale.


Il primo metodo ha fatto ricorso ad un sensore LiDAR (*Laser Imaging Detection and Ranging*) montato su un drone. Il secondo ha impiegato sempre un sensore LiDAR, ma in questo caso del tipo TLS (*Terrestrial Laser Scan*). Lo scopo di tale scelta è stato quello di:

- ottenere un elevato numero di informazioni sull'area di insidenza delle chiome di alcune delle principali specie impiegate nelle piantagioni a pieno campo e in quelle in filare del LIFE+ INBioWood (LiDAR + Drone).
- Ottenere dati precisi sui diametri raggiunti dalle piante a ciclo breve (TLS)
- Comparare i dati delle specie a rapido accrescimento impiegate nelle piantagioni LIFE+ InBioWood (essenzialmente pioppo e platano) con quelli di piantagioni policicliche sperimentali realizzate in precedenza per verificare se il ritmo di accrescimento è comparabile e se, quindi, le piantagioni si stanno sviluppando correttamente.


Dalle Tabelle relative ai dati raccolti da DIBAF, CREA FL, AALSEA e Compagnia delle Foreste sopra riportate si ricava che:

- 1. Il volume della chioma è un parametro direttamente correlato allo sviluppo complessivo delle piante. Il Grafico 1 mette a confronto piante principali a ciclo breve (CB). Fino a 3,5 anni i dati riguardano le piante a CB degli impianti LIFE+ inBioWood, le età maggiori riguardano invece piante principali a CB presenti in piantagioni policicliche sperimentali seguite da AALSEA. La linea di tendenza polinomiale con un coefficiente di determinazione (R2) pari a 0,817, mostra una stretta relazione tra i dati raccolti nelle piantagioni di differente età. Ciò conferma che nei primi 3,5 anni le piantagioni LIFE+ InBioWood hanno registrato uno sviluppo coerente e comparabile a quello delle piantagioni sperimentali AALSEA.
- Per quanto riguarda il CB si ha ulteriore conferma del corretto sviluppo osservando il Grafico 2, dove sono comparati i diametri medi a 130 cm da terra raggiunti dalle piante di 'l-214' a differenti età e con due diversi sistemi di progettazione e gestione: piantagioni policicliche e piantagioni monocicliche tradizionali.
 - a. Gli istogrammi in arancio chiaro mostrano i diametri medi rilevati in Piantagioni 3P LIFE+ InBioWood di età compresa tra 1,5 e 3,5 anni. Gli istogrammi arancio scuro mostrano i diametri medi di piantagioni policicliche di età superiore rispetto a quelli del LIFE+ InBioWood. Osservando gli istogrammi arancioni tutti insieme è possibile vedere come il ritmo di accrescimento diametrico delle piante a CB del LIFE+ InBioWood siano in linea con quelli delle piantagioni sperimentali AALSEA. In entrambi i casi le superfici produttive lorde messe a disposizione delle piante oscillano tra 50 e 100 m².


- b. Gli istogrammi in colore grigio mostrano gli accrescimenti diametrici in di una serie di impianti di pioppo 'l-214' realizzati e condotti secondo un metodo tradizionale, in cui le piante hanno una superficie produttiva lorda a disposizione leggermente superiore ai vecchi sistemi (6 x 7 m => 42 m² di superficie produttiva lorda), poste all'interno di appezzamenti confinanti nell'ambito di una stessa azienda (Tabelle da 26 a 30). Solo l'istogramma relativo a 12 anni di età fa riferimento ad un impianto condotto con superficie produttiva lorda tradizionale (6 x 6 m => 36 m²).
- c. Il confronto tra le due tipologie d'impianto permette di osservare che:
 - negli istogrammi grigi, ad un'età compresa tra i 6 e i 7 anni il forte accrescimento diametrico del pioppo 'l-214' ha un brusco calo e tende a ridursi fortemente con il passare degli anni. Basti notare che dall'età di 6,5 anni, quando raggiunge circa i 29 cm di diametro medio, impiega fino a10-12 anni per raggiungere un diametro medio di 32 cm. Tale brusco calo può essere attribuito al fatto che ad un'età compresa fra 6 e 7 anni il pioppo 'l-214' occupa con la chioma la superficie produttiva che gli è stata assegnata, le foglie si ombreggiano reciprocamente riducendo la produttività dell'attività fotosintetica e, per mancanza di luce, inizia a manifestarsi il disseccamento della parte inferiore della chioma.
 - Negli istogrammi arancioni, grazie alla maggior superficie produttiva lorda messa a disposizione delle piante a CB, pur notando un leggero calo degli accrescimenti diametrici medi, non è possibile osservare il brusco calo evidente invece negli istogrammi grigi. Ciò fa considerare che nelle piantagioni 3P del LIFE+ InBioWood, dal momento che le superfici lorde messe a disposizione del CB sono simili a quelle delle piantagioni sperimentali AALSEA e quindi nettamente più elevate di quelle messe a disposizione con il metodo tradizionale, non si verificheranno bruschi cali dell'accrescimento prima dell'età di 10-12 anni.
- 3. Dal Grafico 3 è possibile ricavare che i platani piantati negli schemi LIFE+ InBioWood (al centro), pur avendo 2 anni in meno, hanno aree di insidenza intermedie rispetto a quelle prodotte in 5,5 anni in piantagioni sperimentali AALSEA da soggetti con 6 m² e 9 m² di superficie produttiva loda a disposizione. Ciò può far affermare che il platano si sta sviluppando correttamente (vedi anche valutazione IQ sul ciclo CBB).
- 4. Nel Grafico 4, se si tiene conto della possibile differenza di fertilità tra le due aree e del fatto che il 2015 e il 2017 (primo triennio Area Tartaro LIFE+ InBioWood) sono stati anni molto più caldi e siccitosi rispetto ai 3 anni compresi tra 2004 e 2006 (primo triennio area sperimentale AALSEA di Valle dell'Oca), si spiega la differenza di altezza tra i due campioni considerati. Pertanto si può considerare adeguato l'accrescimento delle farnie messe a dimora nelle piantagioni LIFE+ InBioWood.

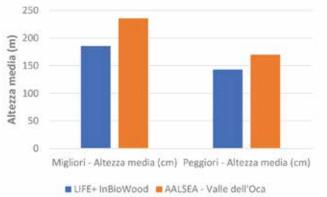

Grafico 1 - Relazione tra età e volume della chioma delle piante di pioppo ('I-214') cresciute nelle piantagioni dimostrative LIFE+ InBioWood (e quelle cresciute nelle piantagioni sperimentali AALSEA.

Grafico 2 - Relazione tra diametro medio dei pioppi 'I-214' ed età. In giallo sono evidenziati i diametri dei pioppi 'I-214' che si trovano all'interno delle piantagioni 3P del LIFE+ InBioWood, in arancio sono pioppi 'I-214 in piantagioni policicliche di età più avanzata (ricavate dalle tabelle soprastanti, da BURESTI et al. 2015 e da Mori e BURESTI LATTES 2017). In grigio sono riportati i dati di accrescimento di 'I-214' in piantagioni di tipo tradizionale.

 ${\bf Grafico~3}$ - Confronto tra le aree di insidenza delle piante di platano relative alle tabelle 13, 14 e 30.

Grafico 4 - Confronto tra le altezze raggiunte dalle piante di farnia collocate nelle piantagioni LIFE+ InBiowood, con 3 stagioni vegetative a seguito della messa a dimora, e quelle di piante di farnia della stessa età collocate negli impianti sperimentali di AALSEA (Valle dell'Oca) del 2004.

BIBLIOGRAFIA

Buresti Lattes E., Castro G., Mori P., Zanuttini R., 2015 - **Sfogliatura del pioppo:** confronto tra piante di **'1-214' di dimensioni tradizionali e di grandi dimensioni.** Sherwood - Foreste ed Alberi Oggi n. 212, pp. 9-12.

Mori P., Buresti Lattes E., 2017 - '1-214' e piantagioni policicliche: rapporti tra diametro del fusto, superficie assegnata e durata del ciclo produttivo. Sherwood - Foreste ed Alberi Oggi n. 229, pp. 11-15.

CONSIDERAZIONI SUI RISULTATI ESPOSTI

1. Variazione di biodiversità indotta dalle piantagioni policicliche permanenti

I valori di Richness maggiori si riferiscono al Phylum artropodi, con un valore massimo a Gazzo 2017 (PNI 2017), pari a 34. Tale valore ha registrato un aumento rispetto alla situazione di pre-impianto (28) e rivela una tendenza all'incremento della biodiversità degli artropodi. Il più alto grado di diversità tra taxa si riferisce ancora agli artropodi (Indice di Shannon-Wiener, H') a Gazzo 2017, incrementato rispetto alla condizione del 2014 e sempre maggiore rispetto agli altri siti.

Per quanto riguarda l'indice di Bray Curtis è da notare che, in relazione agli artropodi, la popolazione campionata a Gazzo nel 2017, è diminuito rispetto al 2014 ed è simile per il 64,5% all'impianto sperimentale di AALSEA, policiclico a termine, di S. Matteo delle Chiaviche. La popolazione complessiva campionata a Gazzo nel 2017 (circa 3,5 anni) ha un grado di similarità pari al 63,2% rispetto alla piantagione policiclica mista di S. Matteo delle Chiaviche (12 anni). Se confrontato con lo stesso sito nello stesso anno, essa mostra un incremento di circa il 20% rispetto alla situazione di pre-impianto del 2014. Questo dato risente, probabilmente, della preponderanza di taxa appartenenti al Phylum artropodi, ma, nonostante la giovanissima età, conferma comunque una tendenza all'incremento della biodiversità. Tale moderato incremento è influenzato, probabilmente, dalla attuale assenza di simbionti fungini, verosimilmente causata del breve lasso di tempo intercorso dall'impianto al momento del rilievo e, forse, delle lavorazioni al suolo che nel triennio è stato necessario eseguire. È verosimile che tali associazioni possano comparire nel futuro.

2. Effetti delle piantagioni policicliche sulla presenza di specie ornitiche significative

Nel corso dello studio sono state rilevate 30 specie, 25 nelle Piantagioni Policicliche, 24 nel pioppeto tradizionale. Le specie in comune sono risultate 19; le 11 specie rilevate solo nell'una o nell'altra tipologia, tutte comunque con frequenza molto bassa, sono legate ad ambienti marginali rispetto agli impianti (ad esempio aironi, germano reale, tortora dal collare, martin pescatore, gallinella d'acqua) o esclusivamente migratrici (come luì bianco o forapaglie macchiettato) con l'eccezione di tortora selvatica e gazza (rilevate solo nelle Piantagioni Policicliche) e di picchio verde e pigliamosche (rilevate solo nel pioppeto). Le analisi mostrano che tra pioppeti tradizionali e Piantagioni Policicliche non c'è differenza di ricchezza né di diversità. Sostanzialmente le due aree ospitano quindi la stessa avifauna nidificante e il quadro è peraltro simile a quello delineato anche in altri studi nei pioppeti della Pianura Padana (BOGLIANI 1988). Per quanto riguarda i livelli di attività, in-

vece, la differenza è significativa e molto consistente a favore delle Piantagioni Policicliche dove le vocalizzazioni sono mediamente il 40% in più (Tabella 11.1, Grafico 11.1); inoltre considerando le 14 specie che è stato possibile analizzare singolarmente, per sette di esse l'attività è risultata significativamente maggiore nelle Piantagioni PT, mentre per una soltanto nei pioppeti (Tabella 11.2).

I livelli di attività più elevati registrati nelle Piantagioni PT ne indicano, rispetto ai pioppeti tradizionali, la maggiore "capacità portante", cioè, in sostanza una maggiore disponibilità di risorse per l'avifauna. Considerando che il campione studiato è ridotto (circa 50 ha di Piantagioni PT, in una matrice costituita sostanzialmente da agricoltura intensiva e pioppicoltura intensiva) e che il popolamento di uccelli nei due tipi di piantagione è risultato molto simile, le differenze che sono emerse in termini di attività sono invece molto nette. La maggiore "capacità portante" delle Piantagioni PT si traduce in una maggiore capacità di "surrogare" le formazioni forestali naturali o semi-naturali (Martín-García et al. 2013). E dove i boschi, come nelle pianure della regione mediterranea, sono fortemente ridotti o del tutto scomparsi, le Piantagioni Policicliche di tipo Naturalistico, come quelle realizzate con il LIFE+ InBioWood, possono assumere una particolare rilevanza sostituendo in parte le coltivazioni agricole intensive o quelle intensive di pioppo la cui efficacia in termini di sostegno alla biodiversità è piuttosto bassa (Martín-García et al. 2016).

Nel caso delle aree interessate direttamente dal progetto LIFE+ In-BioWood, si sono riscontrate differenze minori, rispetto alle aree testimone. Questo risultato dipende verosimilmente da due fattori. Il primo è la giovane età degli impianti (2-3 anni), che non ha permesso di dispiegare tutto il potenziale effetto, che verosimilmente sarà maggiore a maggiore distanza di tempo dall'impianto; il secondo sono gli interventi mirati al controllo delle erbe infestanti che hanno ridotto fortemente la capacità portante del sistema, quantomeno per gli uccelli. Lo sviluppo delle piantagioni e la sospensione della lotta alle erbe infestanti, prevista nel piano di coltura tra il terzo e il questo anno, favoriranno il pieno dispiegarsi del potenziale di questa tipologia di piantagioni nei confronti della fauna ornitica.

3. Effetto tampone sugli inquinanti agricoli con e senza piantagioni policicliche permanenti

???

Capacità di stoccaggio della CO₂ in piantagioni policicliche permanenti rispetto ad aree ad agricoltura intensiva

Da un punto di vista agronomico-ambientale, i risultati ottenuti hanno evidenziato che:

- a seguito della realizzazione delle Piantagioni 3P, la densità apparente del suolo tende ad aumentare, anche se limitatamente, nel corso del tempo, come conseguenza della ridotta lavorazione del suolo a fini agricoli e del compattamento provocato dal transito delle macchine agricole per la manutenzione (sfalcio dell'erba, potature);
- per gli stessi motivi, il contenuto di sostanza organica del suolo tende ad incrementare come conseguenza dell'accumulo di materiale vegetale in via di decomposizione, promuovendo dunque l'accumulo di CO₂ e perciò riducendone indirettamente le emissioni in atmosfera.

Lo studio effettuato (Grafico 2 pagina 46) mostra infatti come, nel corso dei primi 3 anni di vita delle piantagioni LIFE+ InBioWood, la quantità di sostanza organica accumulata nel suolo risulti in media più elevata, rispetto alla situazione ante impianto, sia nello strato 0-30 cm che nello strato 30-60 cm di profondità.

5. Stima dell'Indice di Qualità (IQ) nelle varie tipologie d'impianto e accrescimento delle principali specie arboree impiegate.

Indice di qualità

L'Indice di Qualità è un numero, che può collocarsi in un intervallo di valori compreso tra 0 e 100, utilizzato per esplicitare la rispondenza tra obiettivi produttivi e vigore e forma delle piante principali di una piantagione da legno. Il valore 0 indica che non c'è alcuna relazione tra obiettivi produttivi definiti nel progetto e piantagione esaminata. Il valore 100 indica che c'è una perfetta rispondenza con il progetto. I valori di IQ sono considerati sufficienti se superano 40 (Tabella 2).

Nel complesso le piantagioni a pieno campo realizzate con il LIFE+ InBioWod hanno un IQ pari a 58 punti. Tenendo conto dei parametri riportati in Tabella 2 tale valore fa considerare più che "sufficiente" la rispondenza tra quanto progettato e quanto realizzato. La vicinanza di soli 3 punti alla classe superiore e le variazioni in positivo ancora possibili (per il fatto che, superato lo stress da trapianto potrà aumentare la vigoria delle piante di CML e CBB), fanno ragionevolmente ipotizzare un possibile passaggio alla classe "buona". Le piantagioni a in filare realizzate con il LIFE+ InBioWod hanno un IQ pari a 66 punti. Tale valore, tenendo conto dei parametri riportati in Tabella 2, fa considerare "buona" la rispondenza tra quanto progettato e quanto realizzato.

Accrescimento

Dalle elaborazioni dei dati raccolti da DIBAF, CREA FL, AALSEA e Compagnia delle Foreste (Tabelle Capitolo x) si ricava che:

- Nel Grafico 1 la linea di tendenza polinomiale, con un coefficiente di determinazione (R2) pari a 0,817, mostra una stretta relazione tra i dati raccolti nelle piantagioni di differente età. Ciò conferma che nei primi 3,5 anni le piantagioni LIFE+ InBioWood hanno registrato uno sviluppo coerente e comparabile a quello delle piantagioni sperimentali AALSEA.
- Si ha ulteriore conferma del corretto sviluppo del CB dal Grafico 2, dove sono messi a confronto i diametri medi a 130 cm da terra raggiunti dalle piante di 'l-214' a differenti età e con due diversi

sistemi di progettazione e gestione: piantagioni policicliche e piantagioni monocicliche tradizionali. Osservando il grafico si può ricavare che:

- a. Gli istogrammi in arancio chiaro mostrano i diametri medi rilevati in Piantagioni 3P LIFE+ InBioWood di età compresa tra 1,5 e 3,5 anni. Gli istogrammi arancio scuro mostrano i diametri medi di piantagioni policicliche di età superiore rispetto a quelli del LIFE+ InBioWood. Osservando l'insieme degli istogrammi arancioni (chiari e scuri) è possibile vedere come il ritmo di accrescimento diametrico delle piante a CB del LIFE+ InBioWood siano in linea con quelli delle piantagioni sperimentali AALSEA. In entrambi i casi le superfici produttive lorde messe a disposizione delle piante oscillano tra 50 e 100 m².
- b. Gli istogrammi in colore grigio mostrano gli accrescimenti diametrici in di una serie di impianti di pioppo 'I-214', di età scalare, realizzati e condotti secondo un metodo tradizionale, in cui le piante hanno una superficie lorda a disposizione leggermente superiore ai vecchi sistemi (6 x 7 m => 42 m² di superficie produttiva lorda), poste all'interno di appezzamenti confinanti nell'ambito di una stessa azienda (Tabelle da 26 a 30). Per questa tipologia solo l'istogramma grigio relativo a 12 anni di età fa riferimento ad un impianto condotto sempre anche con superficie produttiva tradizionale (6 x 6 m => 36 m²).
- c. Il confronto tra le due tipologie d'impianto permette di osservare che:
 - negli istogrammi grigi, ad un'età compresa tra i 6 e i 7 anni il forte accrescimento diametrico del pioppo 'l-214' ha un brusco calo e tende a ridursi fortemente con il passare degli anni. Basti notare che dall'età di 6,5 anni, quando raggiunge circa 29 cm di diametro medio, impiega da 3 a 5,5 anni per raggiungere un diametro medio compreso tra 30 e 32 cm. Tale brusco calo può essere attribuito al fatto che ad un'età compresa fra 6 e 7 anni il pioppo 'l-214' occupa con la chioma la superficie produttiva che gli è stata assegnata,

- le foglie si ombreggiano reciprocamente riducendo la produttività dell'attività fotosintetica e, per mancanza di luce, inizia a manifestarsi il disseccamento della parte inferiore della chioma.
- negli istogrammi arancioni, grazie alla maggior superficie produttiva lorda messa a disposizione delle piante a CB, pur notando un leggero calo degli accrescimenti diametrici medi, non è possibile osservare il brusco calo evidente invece negli istogrammi grigi. Ciò fa considerare che nelle piantagioni 3P del LIFE+ InBioWood, dal momento che le superfici lorde messe a disposizione del CB sono simili a quelle delle piantagioni sperimentali AALSEA e quindi nettamente più elevate di quelle messe a disposizione con il metodo tradizionale, non si verificheranno bruschi cali dell'accrescimento prima dell'età di 10-12 anni.
- 3. Dal Grafico 3 è possibile ricavare che i platani piantati negli schemi LIFE+ InBioWood (al centro), con ciclo bravissimo (CBB) pur avendo 2 anni in meno hanno aree di insidenza intermedie rispetto a quelle prodotte in 5,5 anni in piantagioni sperimentali AALSEA da soggetti con 6 m² e 9 m² di superficie produttiva loda a disposizione. Ciò può far affermare che il platano si sta sviluppando correttamente (vedi anche valutazione IQ sul ciclo CBB).
- 4. Nel Grafico 4, se si tiene conto della possibile differenza di fertilità tra le due aree e del fatto che il 2015 e il 2017 (primo triennio Area Tartaro LIFE+ InBioWood) sono stati anni nettamente più caldi e siccitosi rispetto ai 3 anni compresi tra 2004 e 2006 (primo triennio area sperimentale AALSEA di Valle dell'Oca), si spiega la differenza di altezza tra i due campioni analizzati. L'accrescimento delle farnie messe a dimora nelle piantagioni LIFE+ InBioWood può quindi essere considerate adeguato.

CONSIDERATIONS ON THE RESULTS PRESENTED

This publication combines all the reports produced by researchers and experts involved in the monitoring activities foreseen by the Action C1 of the LIFE + InBioWood Project (LIFE12 ENV/IT/000153).

The purpose of the Action C1 was:

- 1. Evaluate the biodiversity variation induced by Potentially Permanent Polycyclic Tree farming (3P Plantations);
- 2. Evaluate the effects of Polycyclic Tree farming on the presence of significant bird species:
- 3. Evaluate the buffer effect on agricultural pollutants with and without Permanent Polycyclic Tree farming;
- 4. Estimate the storage capacity of CO₂ in Permanent Polycyclic Tree farming compared to intensive farming areas;
- 5. Measure the growth of the main species planted and estimate the Quality Index (IQ) in the various types of plantation
- 6. Collect the results of all the investigations carried out in a single digital publication, this report.

Data collection and investigations aimed at achieving the objectives of Action C1 were carried out by researchers and/or expert personnel of the following subjects:

- Associazione Arboricoltura da Legno Sostenibile per l'Economia e l'Ambiente (AALSEA), LIFE + InBioWood partner (for the evaluation of the IQ of the plantations and the collection of data concerning to the development of main plants of the Medium Long Cycle -CML- and the Very Short Cycle -CBB-, also the processing of data on the growth of the LIFE + InBioWood plantations).
- Compagnia delle Foreste S.r.l., LIFE + InBioWood partner and developer of the Quality Index (IQ) for the evaluation of wood plantations (for the evaluation of the IQ of the plantations and the collection of data concerning to the development of main plants of the Medium Long Cycle -CML- and the Very Short Cycle -CBB-, also the processing of data and the evaluations on growth of the LIFE + InBioWood plantations).
- Consiglio per la Ricerca in agricoltura e l'analisi dell'Economia Agraria Centro foreste e Legno- CREA FL (for reliefs with LIDAR terrestrial system -Terrestrial Laser Scan TLS-).
- Consorzio di Bonifica Veronese, partner of the LIFE + InBioWood project (for the weekly
 collection of water samples in the lysimeters used for the assessment of the impact of
 plantations on agricultural pollutants).
- Dipartimento per l'Innovazione dei sistemi Biologici, Agroalimentari e Forestali (DIBAF)

dell'Università della Tuscia (for surveys with LIDAR system installed on drone).

- Dipartimento Territorio e Sistemi Agro-Forestali (TESAF) dell'Università degli Studi di Padova (for the investigation of the effects on biodiversity).
- DREAm Italia Soc. Coop. Agr. For. (for ornithological investigations).
- Horizon S.r.l., Spin-off of the University of Turin (for the analysis
 of water samples to evaluate the impact of plantations on agricultural pollutants).
- PAN S.r.l., Spin-off of the University of Padua (for the investigation of carbon fixed to the soil).

The reports produced by the researchers and experts involved are shown below, in order from 1 to 5. Topics 1 to 4 were produced by individual groups of researchers or experts, the relationship 5, instead, is the result of the joint work of four subjects: the data were collected by DIBAF, CREA FL, AALSEA and Compagnia delle Foreste. The processing of these data and the consequent considerations are by Compagnia delle Foreste and AALSEA.

At the end of the sequence of reports is a summary of the results obtained by researchers and experts writed by AALSEA and Compagnia delle Foreste.

Considerations on the results

1. Variation of biodiversity induced by Permanent Polycyclic Tree farming

The highest Richness values refer to the Phylum arthropods, with a maximum value at Gazzo Veronese 2017 (PNI 2017), equal to 34. This value has increased compared to the pre-implantation situation (28) and reveals a trend to increase the biodiversity of arthropods. The highest degree of difference between taxa still refers to arthropods (Shannon-Wiener Index, H') in Gazzo Veronese 2017, increased compared to the condition of 2014 and always higher than other sites.

About the Bray Curtis index, it should be noted that, in relation to arthropods, the population sampled in Gazzo Veronese in 2017 decreased compared to 2014 and is 64,5% similar to the experimental Polycyclical Plantation of AALSEA in S. Matteo delle Chiaviche. The total population sampled in Gazzo Veronese in 2017 (about 3,5 years old) has a similarity level of 63,2% compared to the mixed polycyclical plantation in S. Matteo delle Chiaviche (12 years old). If compared to the same site in the same year, it shows an increase of about 20% compared to the 2014 pre-implantation situation. This value is probably influenced by the preponderance of taxa belonging to Phylum arthropods, but, despite its very young age anyway confirms a tendency to increase biodiversity. This moderate increase is probably influenced by the current absence of fungal symbionts, probably caused by the short time lapse of the realization of plantation at the time of the survey and, maybe, of the tillage that had to be carried out in the first three years. It is likely that such associations can appear in the future.

2. Effects of Potentially Permanent Polycyclic Tree farming on the presence of significant ornithic species

During the study, 30 species were detected, 25 in the experimental Polycyclic Tree farming, 24 in the traditional poplar plantation. The common species were 19; 11 species were detected only in one of

the two type of tree framing, all however with very low frequency, are linked to marginal environments compared to the plantations (for example grey herons, mallard, Eurasian collared dove, common kingfisher, common moorhen) or exclusively migratory (such as Western Bonelli's Warbler or Common Grasshopper Warbler) with the exception of European turtle dove and Eurasian magpie (found only in Polycyclic Tree farming) and of green woodpecker and spotted flycatchers (found only in the poplar plantation).

The analyzes show that between traditional poplar trees and Polycyclic Tree farming there is no difference in richness or diversity. Substantially, the two areas host the same nesting birdlife and the situation is similar to that outlined in other studies in the poplar woods of the Po Valley (Bogliani 1988). With regard to the levels of activity, instead, the difference is significant and very substantial in favor of Polycyclic Tree farming where the vocalizations are on average 40% more (Chapter 4 - Table 6); also considering the 14 species that could be analyzed individually, for seven of them the activity was significantly higher in the Polycyclic plantations, while for one only in the traditional poplar tree farming (Chapter 4 - Table 6). The highest levels of activity recorded in the Polycyclic plantations indicate, with respect to the traditional poplar plantations, the greater "bearing capacity", that is, essentially a greater availability of resources for the birds. Considering that the studied sample is small (about 50 ha of Polycyclic plantations, in a context essentially formed of intensive farming and intensive poplar plantations) and that the population of birds in the two types of plantation was very similar, the differences that emerged in terms of activity, they are very clear. The greater "bearing capacity" of the Polycyclic plantations results in a greater ability to "subrogate" natural or semi-natural forest formations (Martín-García et al. 2013). And where the woods, as in the plains of the Mediterranean region, are greatly reduced or completely disappeared, the Potentially Permanent Polycyclic Tree farming, such as those made with LIFE+ InBioWood, can be particularly important by partly replacing intensive agricultural crops or traditional poplar plantations whose contribution for the biodiversity is relatively low (MARTÍN-GARCÍA et al., 2016).

In the case of the areas directly affected by the LIFE+ InBioWood Project are minor differences were found with respect to the witness areas. This result probably depends on two factors. The first is the young age of the plantations (2-3 years), which has not allowed to deploy all the potential effect, which is likely to be greater with longer distance from the plantation; the second is the soil tillage aimed at controlling weeds that have greatly reduced the bearing capacity of the system, at least for birds. The development of the plantations and the suspension of the fight against weeds, foreseen in the cultivation plan between the 3 and 4 year, will favor the full unfolding of the potential of this type of plantations in respect of the ornithic fauna.

3. Buffer effect on agricultural pollutants with and without Potentially Permanent Polycyclic Tree farming???

4. CO₂ storage capacity in Potentially Permanent Polycyclic Tree farming compared to intensive farming

From an agronomic-environmental point of view, the results obtained showed that:

 after making Potentially Permanent Polycyclic Tree farming, the apparent density of the soil tends to increase, even if limited,

- over time, as a consequence of the reduced tillage for agricultural purposes and the compaction of soil caused by the transit of agricultural machinery for maintenance (mowing grass, prunings);
- for the same reasons, the organic substance content of the soil tends to increase as a consequence of the accumulation of decomposing plant material, thus promoting the accumulation of CO₂ and therefore indirectly reducing the emissions into the atmosphere.

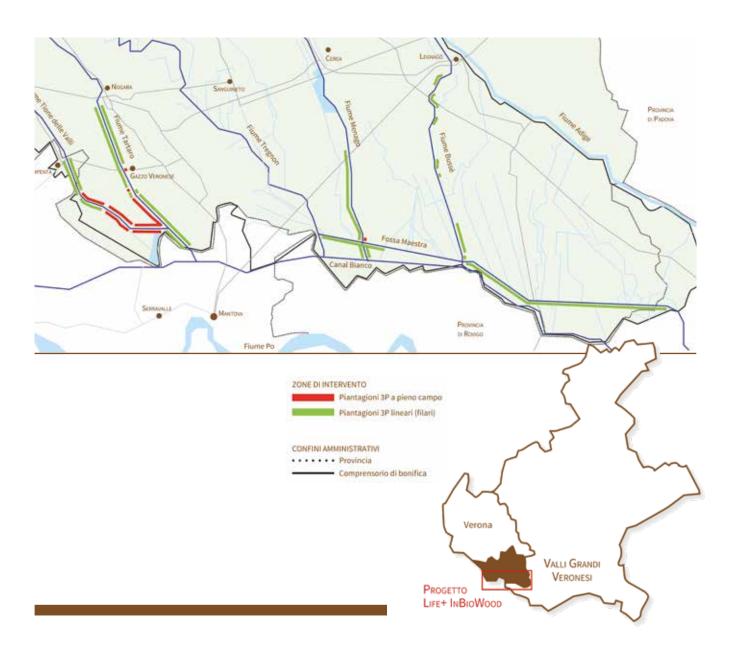
The study carried out (Chapter 6 - Picture 3) shows how, during the first 3 years of the LIFE+ InBioWood 3P Plantations, the quantity of organic substance accumulated in the soil is higher, compared to the situation before planting, both in layer 0 -30 cm that in the layer 30-60 cm deep.

Estimation of the Quality Index (IQ) in the various types of plant and growth of the main tree species used.

Quality Index

The Quality Index is a number, which can be placed in a range of values between 0 and 100, used to explain the correspondence between production objectives and vigour and shape of the main plants of a wood plantation. The value 0 indicates that there is no relationship between production objectives defined in the project and plantation examined. The value 100 indicates that there is a perfect correspondence with the project. Quality Index values are considered sufficient if they exceed 40 (Chapter 7 - Table 2).

Overall, the open field plantations with LIFE + InBioWood have a Quality Index of 58 points. Considering the parameters shown in Table 2, this value makes the correspondence between what has been designed and what has been realized more than "sufficient". The proximity of only 3 points to the upper class and the positive variations still possible (for example due to the fact that the transplant stress can increase the vigour of the plants of Medium Long Cycle - CML - and Very Short Cycle - CBB), they reasonably assume a possible passage to the "good" class.


The linear plantations made with the LIFE+ InBioWod have a Quality Index equal to 66 points. This value, considering the parameters shown in Table 2 (Chapter 7), makes the correspondence between what has been designed and what has been realized to be "good".

Growth

From the elaboration of the data collected by DIBAF, CREA FL, AALSEA and Compagnia delle Foreste (Tables Chapter 8) we can see that:

- In Graphic 1 (Chapter 8), the polynomial trend line, with a coefficient of determination (R2) equal to 0,817, shows a close relationship between the data collected in plantations of different ages. This confirms that in the first 3,5 years the LIFE+ InBioWood plantations have seen a consistent and comparable development to that of the AALSEA experimental plantations.
- 2. There is further confirmation of the correct development of the Short Cycle (CB) from Graphic 2 (Chapter 8), where the average diameters to 130 cm from the ground achieved by the 'I-214' poplar plants at different ages and with two different design and management systems are compared: Potentially Permanent Polycyclic Tree farming and traditional monocyclic plantations. Observing the graphic we can deduce that:
 - a. The light orange histograms show the average diameters found in Potentially Permanent Polycyclic Tree farming of

- LIFE+ InBioWood aged between 1,5 and 3,5 years. The dark orange histograms show the average diameters of Polycyclic Tree farming older than those of LIFE+ InBioWood. Observing all the orange histograms (light and dark) it is possible to see how the growth rate of the Short Cycle (CB) plants of the LIFE+ InBioWood is in line with those of the experimental plantations AALSEA. In both cases the gross productive areas made available to plants range between 50 and 100 m².
- b. The gray histograms show the diametric growth in a series of 'I-214' poplar plants, of scalar age, produced and conducted according to a traditional method, in which the plants have a gross surface available slightly higher than the old systems (6 x 7 m => 42 m2 of gross productive area), placed within adjacent parcels within the same farm (Tables 26 to 30). For this type only the gray histogram relative to 12 years of age refers to a plantation always conducted also with traditional gross production area (6 x 6 m => 36 m²).
- c. The comparison between the two types of system allows to observe that:
 - in the gray histograms, at an age between 6 and 7 years, the strong diametric growth of poplar 'l-214' has a sharp decline and tends to shrink strongly over the years. Just think that from the age of 6,5 years, when it reaches about 29 cm of average diameter, it takes up to 10-12 years to reach an average diameter of 32 cm. This sharp decline can be attributed to the fact that at an age between 6 and 7 years the 'l-214' occupies with the crown the productive area that has been assigned to it, the leaves shade each other mutually reducing the productivity of the activity photosynthetic and, due to lack of light, the desiccation of the lower part of the crown begins to appear.
 - in the orange histograms, thanks to the larger gross productive surface made available to the plants of Short Cycle (CB) plants, while noticing a slight decrease in average diametric accretions, it is not possible to observe the sharp drop evident in gray histograms. This makes us consider that in the 3P plantations of LIFE+ InBioWood, since the gross surfaces made available to the Short Cycle (CB) are similar to those of the experimental AALSEA plantations and therefore much higher than those made available by the traditional method, there will be no sharp declines of growth before the age of 10-12.
- 3. From Graphic 3 (Chapter 8) it is possible to find that the plantains planted in the LIFE+ InBioWood schemes (in the center), with a Very Short Cycle (CBB) even if they are 2 years younger, have intermediate crown cover compared to those produced in 5,5 years in experimental plantations AALSEA from subjects with 6 m² and 9 m² of gross productive area available. This can lead to the assertion that the plane tree is developing correctly (see also IQ evaluation on the CBB cycle).
- 4. In Graphic 4 (Chapter 6), if we take into account the possible difference in fertility between the two areas and the fact that 2015 and 2017 (the first three-year Tartaro Area LIFE+ InBioWood) were clearly warmer and drier years compared to the 3 years between 2004 and 2006 (first three years of experimental area AALSEA of Valle dell'Oca), explains the difference in height between the two samples analyzed. The growth of oaks (Quercus robur) in the LIFE+ InBioWood plantations can therefore be considered appropriate.

Progetto Life+ InBioWood

Beneficiario coordinatore

